EXONMOBIL BIOMEDICAL SCIENCES, INC.

CONTRACT NUMBER: 2005-101815

FINAL REPORT

STUDY NUMBER: 0545979

TEST SUBSTANCE: MRD-05-459

READY BIODEGRADABILITY: OECD 301F
MANOMETRIC RESPIROMETRY TEST on
HIGH NAPHTHENIC, HEAVY, STRAIGHT-RUN NAPHTHA

PERFORMED FOR:

American Petroleum Institute 1220 L Street, NW Washington, DC 20005-4070

PERFORMED AT:

ExxonMobil Biomedical Sciences, Inc. Laboratory Operations 1545 Route 22 East, P.O. Box 971 Annandale, New Jersey 08801-0971

STUDY COMPLETION DATE: March 1, 2007

08TP 11

Revision 1: November 18, 2008

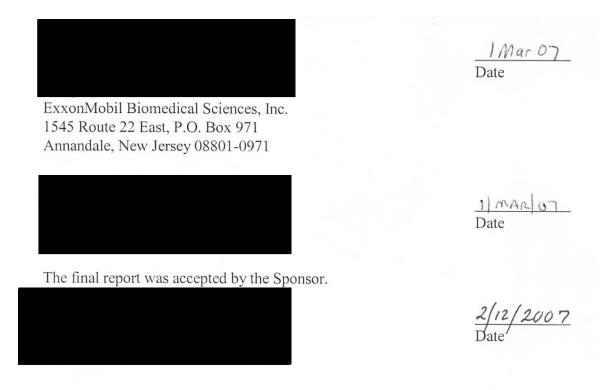
TABLE OF CONTENTS

	Page
GLP COMPLIANCE STATEMENT	3
QUALITY ASSURANCE STATEMENT	4
PERSONNEL	5
SUMMARY	6
INTRODUCTION	7
MATERIALS AND METHODS	9
EXPERIMENTAL PROCEDURE	12
RESULTS AND DISCUSSION	14
CONCLUSION	15
PROTOCOL DEVIATIONS	15
RECORDS	15
REFERENCES	15
TABLES:	1.6
Table 1 - Percent Biodegradation Results Table 2 - Mg Oxygen Consumed Results	
FIGURES:	
Figure 1 - Percent Biodegradation	
APPENDICES	
Appendix A - Manometric Respirometery Test Procedure	
Appendix B - Calculations.	
Appendix C - Test Substance Characterization	
Appendix B - Test Substance, Elemental Analysis	
Appendix F - Protocol	
Appendix G - Pre-Test Compositional Analyses and	
Sample Physical-Chemical Characterization Data	45
Appendix H - Sample Characterization of High Naphthenic Naphtha:	
Chemical Abstract Number Designation	
Appendix I – Report Amendment	70

Revision 1: November 18, 2008

GLP COMPLIANCE STATEMENT

I hereby accept responsibility for the validity of these data and declare that to the best of my knowledge the study contained herein was performed under my supervision in compliance with the OECD¹ and USEPA² Good Laboratory Practice (GLP) standards with exceptions noted below.


The test substance elemental analysis may not have been performed in a GLP compliant manner, since Quantitative Technologies Inc. (QTI) is not a GLP compliant facility. However, a standard, (Acetanilide), was employed to monitor the quality of the data. The values were within the standard limits. QTI is a FDA and DEA-registered contract Analytical Research & Development Laboratory, operating in accordance with cGMP regulations.

Contaminant analysis of the water was not performed in a GLP compliant manner. Accutest[®] laboratory is accredited by the National Environmental Laboratory Accreditation Conference (NELAC). The analyses are performed using standard US EPA methods.

Both QTI and Accutest[®] have been audited by ExxonMobil Biomedical Sciences, Inc. using the ExxonMobil Quality Practices and Guidelines (QP & G v. 5.1).

It is unknown if the positive control substance (sodium benzoate) identity and stability analysis was performed in a GLP compliant manner. The substance is supplied by Sigma Aldrich, an internationally recognized chemical supply company.

None of the above exceptions are believed to have an adverse effect on the study results.

QUALITY ASSURANCE STATEMENT

STUDY NUMBER: 0545979

TEST SUBSTANCE: MRD-05-459

STUDY SPONSOR: American Petroleum Institute

Listed below are the inspections performed by the Quality Assurance Unit of ExxonMobil Biomedical Sciences, Inc., the date(s) of inspection, and the date(s) findings were reported to the Study Director and Management.

Study Phase Inspected	Date(s) of Inspection	Reported to Study Director	Reported to Management
Protocol	10,11 Oct 05	11 Oct 05	13 Oct 05
Protocol Revision 1	13 Dec 05	13 Dec 05	15,16 Dec 05
Term pH	19 Jan 06	20 Jan 06	23,24 Jan 06
Final Report	07,09,16 Mar 06, 17,22 Mar 06	22 Mar 06	20 Jun 06
Second Review of Final Report	13,15 Jun 06	15 Jun 06	20 Jun 06
Report Revision 1	22 Jan 08	22 Jan 08	23 Jan 08

The final report accurately reflects the methods, procedures and observations documented in the raw data.

25 Nov '08 Date

Revision 1: November 18, 2008

READY BIODEGRADABILITY: OECD 301F MANOMETRIC RESPIROMETRY TEST on HIGH NAPHTHENIC, HEAVY, STRAIGHT-RUN NAPHTHA STUDY # 0545979, MRD-05-459

PERSONNEL

Study Director:	
Sponsor Representative:	
Laboratory Coordinator:	
Quality Assurance Unit Coordinator:	
Environmental Toxicology & Fate Lead Investigator:	

SUMMARY

The biodegradability potential of the test substance, MRD-05-459 (High Naphthenic, Heavy, Straight-Run Naphtha), a positive control substance (sodium benzoate) and a toxicity control (combination of test substance and positive control) was studied in aerobic, aqueous test systems. This study was performed in general agreement with the procedure outlined in the OECD 301F³ guideline. Biodegradability of the substance was determined by measuring oxygen consumption in a test medium containing trace nutrients and inoculated with activated sludge supernatant. The test substance, High Naphthenic, Heavy, Straight-Run Naphtha, was evaluated at a mean concentration of 49.2 mg/L. The positive control substance, sodium benzoate, was evaluated at a concentration of 50.4 mg/L. The toxicity control was evaluated at mean concentration of 98.6 mg/L.

The average percent biodegradation of triplicate test systems of High Naphthenic, Heavy, Straight-Run Naphtha was determined to be 77% over a 28 day testing period at a temperature range of 22 ± 2°C. The OECD guideline criteria for classification of a chemical as readily biodegradable states: 1) percent biodegradation must reach 60% within 28 days, and 2) the 60% degradation must be attained within 10 days of exceeding 10% biodegradation. High Naphthenic, Heavy, Straight-Run Naphtha exceeded 10% biodegradation on Day 4 and attained 60% biodegradation on Day 12. Based on test results, High Naphthenic, Heavy, Straight-Run Naphtha can be considered readily biodegradable.

The guideline states that a test substance will be considered inhibitory if the toxicity test systems, containing both the test and positive control substance, reach less than 25% biodegradation by Day 14. The toxicity control systems exceeded 25% by Day 2 therefore the test substance cannot be considered inhibitory at the test concentration.

The OECD guideline validity requirement states that the difference of extreme values should be less than 20% by Day 28, the positive control should exceed 60% of the ThOD by Day 14, and the oxygen uptake of the blank on Day 28 should not exceed 60 mg/L. Sodium benzoate exceeded 60% of the ThOD by Day 2 and the mean cumulative oxygen consumed in the blank systems on Day 28 was 15.51 mg/L. The test substance difference of extremes was 3.8%. Therefore, based on the study data and the passing of other validity requirements, this test is considered valid.

The table below summarizes Day 28 percent biodegradation results for the positive control, test substance and toxicity control.

Test System	Replicate #	% Biodegradation	Mean (SD)	Final pH
Sodium Benzoate	1 2 3	93.26 98.61 96.43	96.10 (2.69)	7.2 7.2 7.2
MRD-05-459 (High Naphthenic, Heavy, Straight-Run Naphtha)	1 2 3	75.20 78.13 77.81	77.05 (1.61)	6.9 6.7 6.7
Toxicity Control	1 2 3	88.40 84.30 84.54	85.75 (2.30)	7. 1 7.1 7.1

INTRODUCTION

Objective

This study was conducted for the sponsor in order to evaluate the potential of the test substance to biodegrade in an aerobic, aqueous environment for use in environmental hazard assessment.

Sponsor

American Petroleum Institute 1220 L Street, NW Washington, DC 20005-4070

Testing Facility

ExxonMobil Biomedical Sciences, Inc. Laboratory Operations 1545 Route 22 East, P.O.Box 971 Annandale, New Jersey 08801-0971

Study Initiation Date

December 7, 2005

Experimental Start

December 22, 2005

Experimental Completion

January 19, 2006

INTRODUCTION (CONT'D)

Compliance

The study was conducted in compliance with OECD¹ and USEPA² Good Laboratory Practice (GLP) standards with the exception outlined on pages 9 and 10.

This study was performed in general agreement with the OECD³ guideline with the exceptions listed on page 13.

Justification for Selection of Test System

Selection of the aerobic aquatic biodegradation test is based upon the OECD 301F³ guideline. This test method is used to determine ready biodegradability by measuring oxygen consumption in a test system consisting of an activated sludge supernatant, test or positive control substance and a nutrient source. Further, activated sludge has historically been used to evaluate the persistence of chemicals in the environment.

Justification of Dosing Route

The test substance could possibly be found in aqueous solution in a wastewater treatment facility.

MATERIALS AND METHODS

Test Substance Identification

EMBSI Identification: MRD-05-459

Sponsor Identification: High Naphthenic, Heavy, Straight-Run Naphtha*

Supplier: EPL Archives, Inc.

Sterling, VA

Date Received: September 30, 2005
Expiration Date: September, 2010
Description: Colorless liquid

Storage Condition: The neat test substance was stored at room temperature.

Characterization of Test Substance

The neat test substance was characterized and the stability determined by the testing facility using the following analysis: UltraViolet/Visible and Infrared Spectrophotometry, Gas Chromatography with Mass Selective Detection and Density. Characterization of the test substance was performed at the testing facility prior to its use and after completion of this study. Documentation of characterization and stability assessment is maintained at the testing facility (see Appendix C).

Documentation outlining the methods of synthesis, fabrication, and/or derivation of the test substance are maintained by the sponsor. The test substance, as received, was considered the "pure" substance.

Elemental Analysis (subcontracted)

Quantitative Technologies Inc. (QTI) (Elemental Analysis Only) P.O. Box 470 Salem Industrial Park, Bldg 5 Whitehouse, New Jersey 08888

An aliquot of the test substance was sent to Quantitative Technologies Inc. (QTI) for elemental analysis, specifically carbon, hydrogen, nitrogen and oxygen. Percent carbon, hydrogen, nitrogen, and oxygen were determined using a Perkin-Elmer 2400 CHN Elemental Analyzer equipped with an oxygen accessory kit. For CHN, the analyzer used combustion to convert the sample elements to simple gases. Upon entering the analyzer, the sample was combusted in a pure oxygen environment. The product gases were separated under steady state conditions, and measured as a function of thermal conductivity. For oxygen, pyrolysis was used to convert the oxygen to carbon monoxide which was separated from the other pyrolozates under steady state conditions and measured as a function of thermal conductivity. This documentation can be found in the raw data and Appendix D.

Revision 1: November 18, 2008

^{*} An explanation of the Chemical Abstract Service (CAS) number designation for this test sample is provided in Appendix H.

MATERIALS AND METHODS (CONT'D)

Sample Retention

A non-study specific sample of the neat test substance has been retained in the testing facility archives.

Positive Control Substance

Substance Identification: Sodium Benzoate, 99%
Manufacturer: Aldrich Chemical Company,

Lot No. 09519HA

Storage Condition: The neat substance was stored at room temperature.

Characterization: The documentation of the stability, identity, solubility, purity, strength, and composition or other characteristics, which appropriately identify the positive control substance, was provided by the manufacturer. This documentation is identified as the Certificate of Analysis sheet and can be found in the raw data and Appendix E.

Carrier

Glass distilled water (gdH₂O) was used as the carrier. The glass distilled water is prepared from UV sterilized deionized well water that is treated and distributed throughout the testing facility via PVC and stainless steel pipes. The feed water for the deionized water system is analyzed by Accutest[®], 2235 Route 130, Dayton, New Jersey 08810. Results of the water analyses are maintained at the testing facility. There are no known contaminants in the water believed to be present at levels that may have interfered with this study.

Inoculum

Fresh activated sludge was used as the inoculum. The activated sludge was obtained from the Clinton Sanitary Wastewater Treatment Plant, Annandale, New Jersey on December 21, 2005. This treatment facility was selected because it deals predominantly with domestic sewage as specified in the guideline. There were no known contaminants in the fresh activated sludge believed to be present at levels high enough to have interfered with this study. A complete description of the inoculum preparation is provided in Appendix A.

MATERIALS AND METHODS (CONT'D)

Solutions

Mineral salt solutions:

Phosphate buffer - pH 7.2 (VWR, Lot# 5129) Ferric chloride - 0.025% (VWR, Lot# 4180) Magnesium sulfate - 2.25% (VWR, Lot# 4131) Calcium chloride - 2.75% (VWR, Lot# 4180)

There were no known contaminants in the solutions believed to be present at levels that may have interfered with the study. All solutions were refrigerated when not in use.

Test medium: The test medium was prepared one day before the test began. A total of 20 liters of glass distilled water was collected in a carboy. The glass distilled water in the carboy was then amended with mineral salt solutions and inoculum. A complete description of the test medium preparation is provided in Appendix A.

Positive control substance stock solution: A stock solution of sodium benzoate at a concentration of approximately 10,000 mg/L was prepared in glass distilled water. An O.I. Analytical Model 1010 Total Organic Carbon (TOC) Analyzer determined the actual carbon content of the sodium benzoate stock solution. The instrument employs a wet oxidation technique with a nondispersive infrared (NDIR) detector. TOC results are contained in Appendix B. The stock solution was refrigerated when not in use.

Test System

The test system was considered as one or any combination of the following in a flask (specific preparation in Appendix A):

All test containers used in this study were uniquely identified as to appropriate composition, i.e., Blank -1, 2, 3; MRD-05-459 - 1, 2, 3, etc. All glassware was washed with Chem-Solv® and then rinsed with glass distilled water to remove any residual organic carbon. All glassware was inspected to ensure cleanliness. The manometric cells were rinsed with two portions of acetone, filled with soapy water and allowed to stand for a few hours. The cells were then rinsed with glass distilled water followed by acetone then finally air dried.

EXPERIMENTAL PROCEDURE

Procedure Summary

The test procedure evaluated the ready biodegradability of the test and positive control substance and a combination of the two (toxicity control) by microorganisms in water. The consumption of oxygen was determined by measuring the quantity of oxygen (produced electrolytically) required to maintain constant gas volume in the respirometer flask, or from the change in volume or pressure (or a combination of the two) in the apparatus. Evolved carbon dioxide was absorbed in a solution of 10N sodium hydroxide (NaOH). The amount of oxygen taken up by the microbial population during biodegradation of the test or positive control substance (corrected for uptake by blank inoculum, run in parallel) is expressed as a percentage of theoretical oxygen demand (ThOD). The ThOD calculation is found in Appendix B. The test was performed in general agreement with the OECD 301F³ guideline with the following clarifications/exceptions:

Clarification

1. The apparatus is an electrolytic respirometer, manufactured by Co-ordinated Environmental Service, Ltd. (Kent, England). The system is based on a proven oxygen generating process coupled to a sensitive manometric cell. The sample was placed in a sample flask, which was then sealed by a manometric cell/CO₂ trap and immersed in a temperature stabilized water bath. For the duration of the experiment, the sample was stirred by a magnetically coupled stirrer. As the biodegradation process progressed, the microorganisms consumed O₂ converting it to CO₂ during aerobic respiration. The CO₂ produced was absorbed by a solution of 10N NaOH in the CO₂ trap, which caused a net reduction in gas pressure within the sample flask. This pressure reduction was detected by the manometric cell and triggered the electrolytic process. The electrolytic process generated oxygen, which restored the pressure in the sample flask. The magnitude and duration of the electrolyzing current are proportional to the amount of oxygen supplied to the microorganisms.

EXPERIMENTAL PROCEDURE (CONT'D)

Clarification (Cont'd)

- 2. The test and positive control substances were tested at concentrations of approximately 50 mg/L. Sodium benzoate was administered to the respective test systems as an aliquot of an aqueous stock solution. The toxicity control (a combination of positive control and test substance) was tested at a concentration of approximately 99 mg/L. The test substance was injected directly into the test flasks containing test medium with a syringe. The weight difference of the syringe was recorded as the weight of test substance added to the flask. Each flask was sealed immediately after addition of the test substance to avoid loss due to volatilization. No aqueous stock solutions were prepared for the test substance because of its poor solubility in water. Also no concentration verification was performed since the test substance is poorly soluble in water.
- 3. The positive control, test substance and toxicity control test systems were tested in triplicate.
- 4. Bias was minimized by preparing the test medium on a large volume basis. In addition, the test medium was aerated for approximately 24 hours to improve homogeneity and ensure random distribution of test organisms to all test systems. The pH of the test medium was 7.3. The initial pH of individual systems was not determined due to the poor solubility of the test substance in water.
- 5. Dissolved organic carbon (DOC) analysis was not performed due to the poor solubility of the test substance.

Exceptions

- 1. No abiotic sterile control systems were tested.
- 2. Test medium was prepared on a large volume basis, aerated and aliquoted into each test container, instead of preparation in the individual test systems.
- 3. The commercial phosphate buffer, used in preparation of the test medium, has a pH value of 7.2 rather than 7.4. The phosphate buffer, purchased from VWR, has been approved by the American Public Health Association (APHA) for use in the Biological Oxygen Demand (BOD) analysis. The BOD buffer has the same composition as the buffer stated the OECD 301F³.
- 4. The inoculum was mixed for 2 minutes in a blender at low speed, instead of medium speed.

RESULTS AND DISCUSSION

Testing was conducted to assess the biodegradability potential of the test substance, High Naphthenic, Heavy, Straight-Run Naphtha, in triplicate test systems at an average concentration of 49.2 mg/L. The biodegradation of the positive control substance, sodium benzoate and a toxicity control (combination of test substance and positive control) were also measured in triplicate test systems at average concentrations of 50.4 mg/L and 98.6 mg/L, respectively. Blank test systems, which did not contain the test or positive control substance, were run concurrently in duplicate. This study was conducted at a temperature range of $22 \pm 2^{\circ}$ C for twenty eight days in general agreement with the OECD $301F^3$ guideline.

The percent biodegradation results and mg oxygen consumed for each test system are reported in Tables 1 and 2, respectively. The oxygen consumed by the test systems was corrected for oxygen consumption occurring in the blank test systems. The Day 28 mean percent biodegradation for High Naphthenic, Heavy, Straight-Run Naphtha was determined to be 77.05%.

The guideline states that a test substance will be considered inhibitory if the toxicity test systems, containing both the test and positive control substance, reach less than 25% biodegradation by Day 14. The toxicity control systems exceeded 25% by Day 2; therefore, the test substance cannot be considered inhibitory at the test concentration.

This test is considered valid since it met the OECD guideline validity requirements as follows: 1) sodium benzoate biodegraded to >60% of the ThOD by Day 2 and 2) the average of the cumulative oxygen consumed in the blank systems was 15.51 mg/L. 3) test substance difference of extremes was 3.8%. A graphical illustration representing the mean percent biodegradation and the mg oxygen consumed by the test systems is reported in Figures 1 and 2, respectively.

The inoculum was prepared using activated sludge from the Clinton Sanitary Wastewater Treatment Plant, Annandale, New Jersey. The Easicult® TTC dip slide results indicated an average bacterial population of 10⁵ colony forming units (CFU)/mL. Biodegradation results for the test and positive control substances were calculated as the net amount of oxygen (mg) consumed by the test system multiplied by a constant. The net amount of oxygen was calculated as the difference between the test system oxygen consumption (mg) and the average oxygen (mg) consumed by the blanks. The amount of oxygen consumed was recorded at each hourly interval for each test system using the CES aerobic respirometer. The constant is defined as the inverse of the product of the ThOD and the mg of the test or positive control substance added to that system multiplied by 100. The ThOD was calculated based on the empirical formula of the appropriate substance. The actual amount of substance added to each system is reported in Appendix A. The ThOD and methods used to determine percent biodegradation are described in Appendix B. The mean percent biodegradation and ThOD calculations were written in Microsoft Excel®.

CONCLUSION

The mean percent biodegradation of triplicate test systems of High Naphthenic, Heavy, Straight-Run Naphtha was determined to be 77% over a 28 day testing period. The test substance achieved 60% biodegradation within the 10 days of exceeding 10% biodegradation; therefore, the test substance can be considered readily biodegradable.

PROTOCOL DEVIATIONS

Temperature deviations were noted for the respirometer baths during the study. Maximum deviations of approximately 1°C above the protocol required 22±1°C occurred, for approximately two days. This is not believed to have had an impact on the integrity or results of the study.

RECORDS

All appropriate materials, methods and experimental measurements required by the protocol have been recorded and documented in the raw data. Any changes, additions or revisions to the protocol were approved by the Study Director and the Sponsor Representative. These changes have been documented in writing, including the date, the justification for the change and the signatures of the Study Director and Sponsor Representative.

The protocol, final report, raw data or computer-generated listings of raw data, supporting study documentation and a non-study specific neat test substance sample will be maintained in the archives of the testing facility for 10 years, after which time the records will be offered to the sponsor prior to disposal.

REFERENCES

- 1. Organization for Economic Cooperation and Development, (OECD), Principles of Good Laboratory Practice, C(97) 186/Final, 1997.
- 2. United States Environmental Protection Agency, (USEPA), Toxic Substances Control Act (TSCA), Good Laboratory Practice Standards, 40 CFR Part 792, 1989.
- 3. Organization for Economic Cooperation and Development, Guidelines for the Testing of Chemicals, Ready Biodegradability, 301F Manometric Respirometry Test (1992).

TABLE 1
PERCENT BIODEGRADATION RESULTS

Test		SODIL	JM BENZ	OATE			MRD-05-459				To	xicity Con	trol		
Day	Rep 1	Rep 2	Rep 3	Mean	SD	Rep 1	Rep 2	Rep 3	Mean	SD	Rep 1	Rep 2	Rep 3	Mean	SD
1	29.99	32.77	31.60	31.45	1.40	0.34	0.50	0.37	0.40	0.09	11.98	6.00	11.53	9.84	3.33
2	60.90	65.41	61.07	62.46	2.56	0.57	1.11	0.82	0.83	0.27	25.31	25.03	25.58	25.31	0.28
3	73.46	78.19	74.28	75.31	2.53	8.02	9.18	9.42	8.87	0.75	29.43	29.12	29.66	29.40	0.27
4	80.42	84.97	80.57	81.99	2.58	16.10	17.11	16.62	16.61	0.51	35.00	34.31	34.97	34.76	0.39
5	83.98	89.14	84.11	85.74	2.94	21.84	23.04	22.42	22.43	0.60	38.65	38.40	38.64	38.56	0.14
6	86.40	91.50	86.92	88.27	2.81	26.58	28.15	27.38	27.37	0.79	43.23	43.18	43.21	43.21	0.03
7	89.62	94.62	90.66	91.63	2.64	33.36	35.74	34.68	34.59	1.19	47.46	47.55	47.24	47.42	0.16
8	95.31	100.44	98.09	97.95	2.57	43.64	43.75	44.13	43.84	0.26	50.82	50.47	50.44	50.58	0.21
11	102.73	108.58	103.05	104.79	3.29	58.18	61.23	59.03	59.48	1.57	61.26	57.28	61.46	60.00	2.36
12	102.51	108.11	103.08	104.57	3.08	63.12	67.44	65.58	65.38	2.17	64.97	61.19	65.82	63.99	2.46
13	101.80	107.15	102.62	103.86	2.88	67.65	69.86	69.07	68.86	1.12	69.74	64.43	69.02	67.73	2.88
14	101.11	106.19	104.08	103.79	2.55	72.54	71.62	71.32	71.83	0.64	74.36	67.88	74.36	72.20	3.74
15	98.62	103.20	101.87	101.23	2.36	72.98	72.25	71.46	72.23	0.76	76.38	69.06	76.69	74.04	4.32
16	96.74	101.59	100.50	99.61	2.54	73.17	73.31	71.57	72.68	0.97	77.64	70.47	77.71	75.27	4.16
17	95.23	100.33	99.49	98.35	2.73	72.83	73.65	71.57	72.68	1.05	78.75	71.87	78.06	76.23	3.79
18	94.45	100.29	98.96	97.90	3.06	72.73	73.95	71.84	72.84	1.06	80.20	73.37	78.49	77.35	3.55
19	94.11	100.01	97.83	97.32	2.98	72.60	74.30	72.16	73.02	1.13	81.17	74.54	79.06	78.26	3.39
20	94.13	99.48	97.30	96.97	2.69	72.77	74.96	72.94	73.56	1.22	82.16	75.49	79.76	79.14	3.38
21	93.40	98.75	96.57	96.24	2.69	72.76	75.39	73.56	73.90	1.35	82.92	76.06	80.32	79.77	3.46
22	93.26	98.61	96.43	96.10	2.69	73.02	76.21	74.54	74.59	1.60	83.78	76.80	81.06	80.55	3.52
23	93.26	98.61	96.43	96.10	2.69	73.24	77.54	75.55	75.44	2.15	84.44	77.77	81.94	81.38	3.37
24	93.26	98.61	96.43	96.10	2.69	73.57	77.83	76.39	75.93	2.17	85.23	79.62	82.74	82.53	2.81
25	93.26	98.61	96.43	96.10	2.69	73.89	78.13	76.91	76.31	2.18	85.97	81.71	83.26	83.65	2.16
26	93.26	98.61	96.43	96.10	2.69	73.89	78.13	77.09	76.37	2.21	86.72	82.84	83.52	84.36	2.07
27	93.26	98.61	96.43	96.10	2.69	74.11	78.13	77.26	76.50	2.12	87.65	83.40	83.86	84.97	2.33
28	93.26	98.61	96.43	96.10	2.69	75.20	78.13	77.81	77.05	1.61	88.40	84.30	84.54	85.75	2.30

The Day 9 and Day 10 data reports were not generated due to a computer malfunction.

The sodium benzoate biodegradation exceeded 100% between Day 9 (estimated) and Day 15; this was due to a lag in oxygen consumption by the Blank systems. This is not believed to have had an impact on the results of the study.

Difference of extremes = ((highest replicate value - lowest replicate value) / mean of high and low values) x 100

TABLE 2
MG OXYGEN CONSUMED RESULTS

Test			BLANK			SODI	UM BENZ	ZOATE		
Day	Rep 1	Rep 2*	Rep 3	Mean	SD	Rep 1	Rep	2 epR	3 Mean	SD
1	0.00	XXX	0.00	0.00	0.00	25.22	27.55	26.57	26.45	1.17
2	0.00	XXX	0.00	0.00	0.00	51.21	55.00	51.35	52.52	2.15
3	0.00	XXX	0.00	0.00	0.00	61.77	65.74	62.45	63.32	2.12
4	0.00	XXX	0.00	0.00	0.00	67.62	71.45	67.74	68.94	2.18
5	0.58	XXX	0.58	0.58	0.00	71.20	75.53	71.30	72.68	2.47
6	1.23	XXX	1.08	1.16	0.11	73.80	78.09	74.24	75.38	2.36
7	1.23	XXX	1.08	1.16	0.11	76.51	80.72	77.39	78.21	2.22
8	1.23	XXX	1.08	1.16	0.11	81.30	85.61	83.63	83.51	2.16
11	3.12	XXX	3.37	3.25	0.18	89.63	94.55	89.90	91.36	2.77
12	3.94	XXX	4.23	4.09	0.21	90.28	94.98	90.76	92.01	2.59
13	5.16	XXX	5.02	5.09	0.10	90.69	95.19	91.38	92.42	2.42
14	6.66	XXX	5.56	6.11	0.78	91.13	95.40	93.63	93.39	2.15
15	9.83	XXX	7.41	8.62	1.71	91.55	95.40	94.27	93.74	1.98
16	12.35	XXX	8.43	10.39	2.77	91.73	95.82	94.90	94.15	2.15
17	14.43	XXX	9.73	12.08	3.32	92.15	96.44	95.73	94.77	2.30
18	15.93	XXX	10.83	13.38	3.61	92.80	97.71	96.59	95.70	2.57
19	16.97	XXX	11.68	14.33	3.74	93.46	98.42	96.59	96.16	2.51
20	17.51	XXX	12.04	14.78	3.87	93.92	98.42	96.59	96.31	2.26
21	18.08	XXX	12.70	15.39	3.80	93.92	98.42	96.59	96.31	2.26
22	18.31	XXX	12.70	15.51	3.97	93.92	98.42	96.59	96.31	2.26
23	18.31	XXX	12.70	15.51	3.97	93.92	98.42	96.59	96.31	2.26
24	18.31	XXX	12.70	15.51	3.97	93.92	98.42	96.59	96.31	2.26
25	18.31	XXX	12.70	15.51	3.97	93.92	98.42	96.59	96.31	2.26
26	18.31	XXX	12.70	15.51	3.97	93.92	98.42	96.59	96.31	2.26
27	18.31	XXX	12.70	15.51	3.97	93.92	98.42	96.59	96.31	2.26
28	18.31	XXX	12.70	15.51	3.97	93.92	98.42	96.59	96.31	2.26

^{*} Replicate 2 was not included in the study; following cell initialization excessive oxygen consumption was observed (>10 mg), this may have been due to a possible breach or respirometer malfunction.

Test		MR	D-05-459	9	Toxicity Control					
Day	Rep 1	Rep 2	Rep 3	Mean	SD	Rep 1	Rep 2	Rep 3	Mean	SD
1	0.58	0.83	0.62	0.68	0.13	28.22	13.95	27.22	23.13	7.97
2	0.96	1.85	1.37	1.39	0.45	59.60	58.23	60.37	59.40	1.08
3	13.60	15.37	15.70	14.89	1.13	69.31	67.74	69.99	69.01	1.15
4	27.28	28.66	27.72	27.89	0.70	82.43	79.82	82.53	81.59	1.54
5	37.59	39.15	37.96	38.23	0.82	91.61	89.92	91.75	91.09	1.02
6	46.21	48.29	46.81	47.10	1.07	102.96	101.61	103.13	102.57	0.83
7	57.69	61.00	58.98	59.22	1.67	112.91	111.79	112.64	112.45	0.58
8	75.12	74.41	74.74	74.76	0.36	120.85	118.58	120.18	119.87	1.17
11	101.86	105.77	101.69	103.11	2.31	147.52	136.51	148.27	144.10	6.58
12	111.06	116.99	113.43	113.83	2.98	157.08	146.44	159.39	154.30	6.91
13	119.74	122.06	120.26	120.69	1.22	169.33	154.98	167.97	164.09	7.92
14	129.05	126.03	125.03	126.70	2.09	181.22	164.04	181.59	175.62	10.03
15	132.30	129.59	127.78	129.89	2.27	188.51	169.29	189.59	182.46	11.42
16	134.40	133.13	129.74	132.42	2.41	193.24	174.35	193.78	187.12	11.07
17	135.51	135.38	131.43	134.11	2.32	197.53	179.28	196.28	191.03	10.19
18	136.63	137.20	133.18	135.67	2.18	202.25	184.07	198.59	194.97	9.62
19	137.36	138.74	134.65	136.92	2.08	205.48	187.74	200.90	198.04	9.21
20	138.11	140.28	136.40	138.26	1.94	208.27	190.40	203.00	200.56	9.18
21	138.69	141.61	138.05	139.45	1.90	210.67	192.34	204.92	202.64	9.37
22	139.26	143.11	139.80	140.72	2.08	212.81	194.17	206.79	204.59	9.51
23	139.63	145.34	141.49	142.15	2.91	214.35	196.42	208.87	206.55	9.19
24	140.19	145.82	142.88	142.96	2.82	216.23	200.73	210.75	209.24	7.86
25	140.74	146.32	143.76	143.61	2.79	217.98	205.61	211.98	211.86	6.19
26	140.74	146.32	144.05	143.70	2.81	219.72	208.23	212.58	213.51	5.80
27	141.11	146.32	144.34	143.92	2.63	221.91	209.54	213.39	214.95	6.33
28	142.94	146.32	145.25	144.84	1.73	223.68	211.62	215.00	216.77	6.22

The Day 9 and Day 10 data reports were not generated due to a computer malfunction.

FIGURE 1
PERCENT BIODEGRADATION

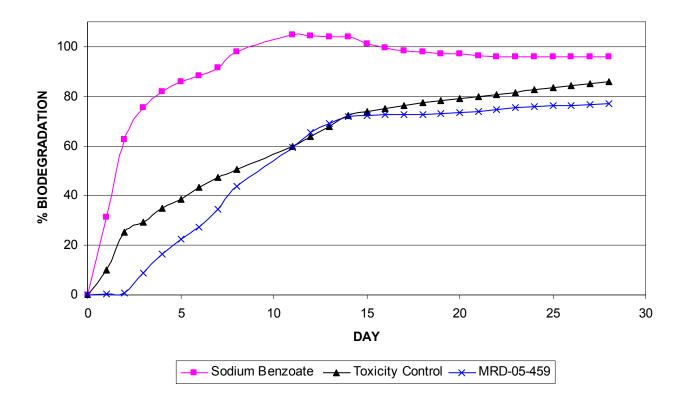
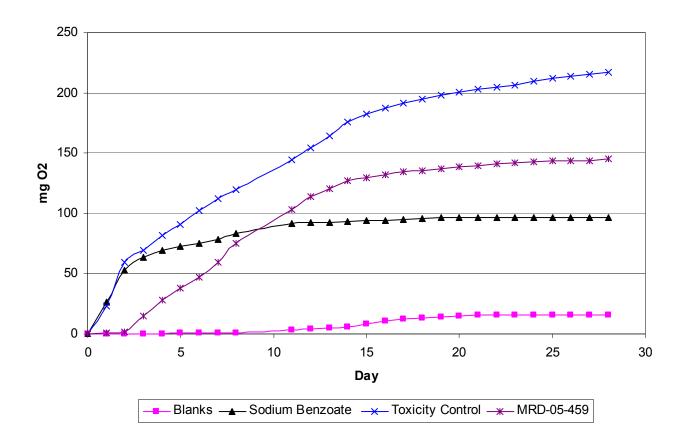



FIGURE 2
MG OXYGEN CONSUMED

APPENDIX A - MANOMETRIC RESPIROMETRY TEST PROCEDURE

Inoculum Preparation

Fresh activated sludge was obtained on Day -1 of the test from the Clinton Sanitary Wastewater Treatment Plant in Annandale, NJ. Duplicate 10 mL aliquots of the activated sludge were filtered through pre-weighed Whatman 934-AH filter pads in a Buchner funnel and vacuum flask set up. The filter pads were placed in an aluminum pan and dried in an oven for one hour and twelve minutes at 101°C. After cooling, the filters were reweighed and the mean total suspended solids concentration was determined to be 3.5 g/L. The sludge was homogenized in a blender for two minutes at low speed. The homogenated sample was allowed to settle for one hour and fifteen minutes, after which the supernatant was decanted (avoiding carry-over of sludge solids). An aliquot of the supernatant was used to determine microbial activity. The microbial activity was determined using the Easicult®-TTC dip slides Lot No. 1793201. This was accomplished by removing the agar stick from the culturing tube, and dipping the agar into the supernatant aliquot. Excess supernatant was blotted off with a clean paper towel, and the agar stick was then placed back into the culture tube. The whole unit was placed into a dark upright incubator for 48 hours at 20 ± 1 °C monitored by the Watchdog V5 monitoring system. Based on comparison of the density of colonies growing on the agar with the model density chart provided by the supplier, the microbial activity was determined to be 10⁵ CFU/mL. The remaining decanted sludge supernatant was used for final preparation of the test medium on Day -1.

Test Medium Preparation

Twenty liters of glass distilled water were collected in a carboy. A quantity of 460 mL of glass distilled water was removed from the carboy to obtain a final volume of twenty liters after addition of the mineral salt solutions and activated sludge supernatant. The following quantities of mineral salt solutions and inoculum were added to the carboy:

1 mL of magnesium sulfate solution per liter of glass distilled water 1 mL of calcium chloride solution per liter of glass distilled water 10 mL of phosphate buffer solution per liter of glass distilled water 1 mL of ferric chloride solution per liter of glass distilled water 10 mL of activated sludge supernatant per liter of glass distilled water

The test medium was aerated with carbon dioxide free air for 24 hours before use.

APPENDIX A - MANOMETRIC RESPIROMETRY TEST PROCEDURE (CONT'D)

Preparation of the Test Systems

Test systems were prepared as follows:

Test Systo 1L Respiromet		Amount of Neat Test Substance MRD-05-459 Added (mg)	Amount of 10069 mg/L Sodium Benzoate Stock Solution Added (mL)	Test Medium (Liter)
Blank	Rep 1			1.0
	Rep 2*			1.0
	Rep 3			1.0
Sodium	Rep 1		5.0	1.0
Benzoate	Rep 2		5.0	1.0
	Rep 3		5.0	1.0
MRD-05-459	Rep 1	48.9		1.0
(High Naphthenic, Heavy,	Rep 2	49.1		1.0
Straight-Run Naphtha)	Rep 3	49.7		1.0
Toxicity Control	Rep 1	48.8	5.0	1.0
	Rep 2	47.4	5.0	1.0
	Rep 3	48.6	5.0	1.0

^{*} Replicate 2 of the Blank system was not used, excessive oxygen consumption was observed on Day 0, therefore, data collection was not initiated.

The test substance test systems were dosed by weighing a syringe containing the test substance, injecting the test substance into a test flask containing one liter of test medium and reweighing the syringe. The weight difference is equal to the amount of test substance added to the test systems. Each test system was sealed immediately after addition of the test substance to minimize loss due to volatilization. The sodium benzoate systems were dosed by adding 5.0 mL of 10069 mg/L stock solution to the respective test systems. After assembly of the test systems, stirring was initiated, the equipment was checked to ensure no leaks were present, and the oxygen uptake measurements were initiated. No further attention was required other than printing the respirometer data and making daily checks during normal working hours to see that the correct temperature ($22 \pm 1^{\circ}$ C) and adequate stirring were maintained. At the end of 28 days, the pH of the contents in each flask was measured using a Hanna PH checker.

APPENDIX B - CALCULATIONS

Theoretical Oxygen Demand (ThOD)

The empirical formula and the theoretical oxygen demand (ThOD) of the test substance were calculated from elemental analysis data (assuming 100 gram test substance). Sodium benzoate ThOD was calculated using the empirical formula and was determined to be $1.67 \text{ mg } O_2/\text{mg}$ sodium benzoate. The ThOD calculation of the test and positive control substance was based on Annex IV of OECD $301F^3$ guideline.

TEST SUBSTANCE	% CARBON	% HYDROGEN	% OXYGEN	% NITROGEN	MOLE OF CARBON	MOLE OF HYDROGEN	MOLE OF OXYGEN	MOLE OF NITROGEN	MOLE OF SODIUM	MOL. WT.	ThOD
MRD-05-459	85.54	14.35	0.10	0.08	7.12	14.24	0.01	0.01	0.00	100.17	3.41
Sodium Benzoate					7.00	5.00	2.00	0.00	1.00	144.11	1.67
Sodium Benzoate & MRD-05-459					14.12	19.24	2.01	0.01	1.00	244.28	2.38

Elemental Analysis performed by QTI

MOLE = % ELEMENT (IN GRAMS)/ATOMIC WT OF ELEMENT)

AT. WT OF C = 12.011 G/MOLE AT. WT OF H = 1.0079 G/MOLE

AT. WT OF O = 15.999 G/MOLE AT. WT OF N = 14.007 G/MOLE

MOL. WT. = (MOLE OF CARBON x AT. WT.) + (MOLE OF HYDROGEN x AT. WT.) + (MOLE OF OXYGEN x AT. WT.) + (MOLE OF NITROGEN x AT. WT.) + (MOLE OF SODIUM x AT. WT.)

 $ThOD \ (mg\ O2/mg\ Test\ Substance) = [16\ x\ ((2\ x\ NO.\ OF\ CARBON) + ((0.5\ x\ (NO.\ OF\ HYDROGEN) - (3\ x\ NO.\ OF\ NITROGEN))) + (0.5\ x\ SODIUM) - (NO.\ OF\ OXYGEN)))/MOL.\ WT.$

* Sodium Benzoate = $C_7H_50_2Na$

Molecular weight = 144.11

THOD =
16 x [(2 x moles of carbon) + (0.5 x moles of Hydrogen) + (0.5 x moles of Na) - (moles of Oxygen)]

Molecular weight

Molecular weight

Sodium Benzoate THOD = $\frac{16 \times [(2 \times 7) + (0.5 \times 5) + (0.5 \times 1) - 2]}{144 \times 11} = 1.665394$

Sodium Benzoate Concentration

The sodium benzoate stock solution concentration was determined to be 10069 mg sodium benzoate/L by dividing the solution total organic carbon (TOC) content (5840 mg carbon /L) by the percent carbon of sodium benzoate (58%). A 5 mL aliquot of the solution added to each test system contained 50.35 mg of sodium benzoate. The pH of the stock solution was 7.3.

Percent biodegradation values were calculated by the respirometer software. The following parameters for each system were entered into the software: the ThOD, and the mass of positive control or test substance added. The software incorporates the hourly logged oxygen uptake value along with the entered parameters into the following calculations to derive the percent biodegradation.

$$Constant = 100 \frac{1}{ThOD \ x \ mg \ test \ substance \ in \ vessel}$$

%Percent Biodegradation = (mg Q_2 uptake by test substance - \overline{X} mg Q_2 uptake by blank) x constant

The mg of oxygen consumed by the blank represents the average oxygen consumption for the duplicate test systems.

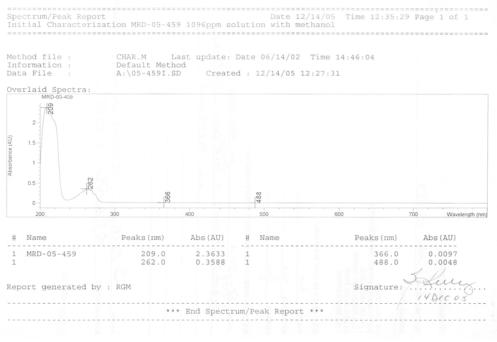
APPENDIX C - TEST SUBSTANCE CHARACTERIZATION

The test substance was initially characterized on December 14, 2005. Analyses included Ultraviolet-Visible (UV-VIS) spectroscopy and Fourier Transform Infrared (FT-IR) spectroscopy, density and GC-MS analysis. Stability of the neat test substance was confirmed by repeating these same analyses on February 6, 2006 after the completion of this study.

UV-VIS spectra are presented in Figures C-1 and C-2 representing, the initial and final spectrum at concentrations of 1096 and 1670 ppm with methanol, respectively. UV-VIS spectra were acquired on a Hewlett-Packard 8453 diode array UV-VIS spectrophotometer using a 1 cm quartz cell, a scan time of 0.5 seconds, and resolution of 2 nm.

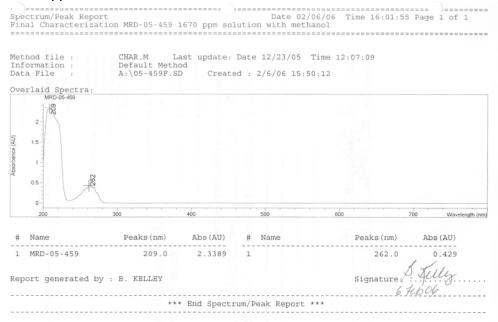
FT-IR spectra of the neat test substance are presented in Figures C-3 and C-4 representing the initial and final spectra. FT-IR spectra were acquired on a Thermo Nicolet Avatar 360 FT-IR spectrometer with a KBr plate. The spectra were obtained with the following settings: resolution of 4 cm⁻¹, gain of 1, and scan number of 32.

The test substance was also characterized by GC-MS using a Varian Saturn 2000 GC-MS system with a Varian 3800 gas chromatograph. For comparison of relative retention times to a series of known hydrocarbons under the analytical conditions employed, High Naphthenic, Heavy Straight-Run Naphtha was analyzed against an ASTM D3710 calibration mixture. Figures C-5 and C-6 represent the initial and final GC-MS total ion chromatograms, respectively. The test substance eluted as a complex mixture with numerous chromatographic components detected between retention times 4 and 20 minutes. This corresponds to bracketing by the standard hydrocarbons n-heptane and n-decane under the analytical conditions employed. The single most abundant component eluted at approximately 4.7 minutes.


The test substance initial and final density were measured at 20°C using an Anton Paar DMA 4500 Density/Specific gravity/Concentration meter. The initial density was measured as 0.7500 g/mL and the final density was 0.7504 g/mL. The test substance was observed to be a liquid under ambient laboratory conditions and immiscible in water but miscible in methanol and hexane.

Comparison of the initial and final analyses appeared to be substantially similar indicating the neat test substance was stable over the duration of the study period.

APPENDIX C - TEST SUBSTANCE CHARACTERIZATION (CONT'D)


UV-VIS SPECTRA Figure C-1 Initial

Initial Characterization High Naphthenic, Heavy Straight-Run Naphtha 1096 ppm solution in methanol

Figure C-2 Final

Final Characterization High Naphthenic, Heavy Straight-Run Naphtha 1670 ppm solution in methanol

APPENDIX C - TEST SUBSTANCE CHARACTERIZATION (CONT'D)

FT-IR SPECTRA Figure C-3 Initial

Initial Characterization High Naphthenic, Heavy Straight-Run Naphtha

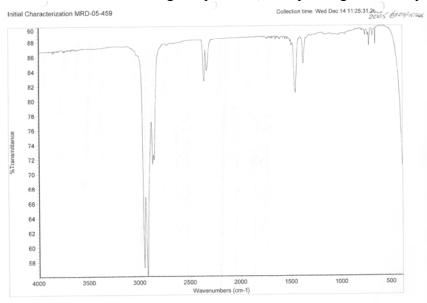
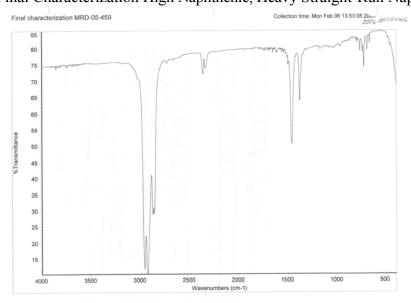



Figure C-4 Final

Final Characterization High Naphthenic, Heavy Straight-Run Naphtha

APPENDIX C - TEST SUBSTANCE CHARACTERIZATION (CONT'D)

INITIAL TOTAL ION CHROMATOGRAM Figure C-5

AREA PERCENT REPORT

Data File Name:

c:\saturnws\12-14-05 11;47;45 am -- mrd-05-459 .sms

Acquisition Date: 12/14/05 11:47:46 AM

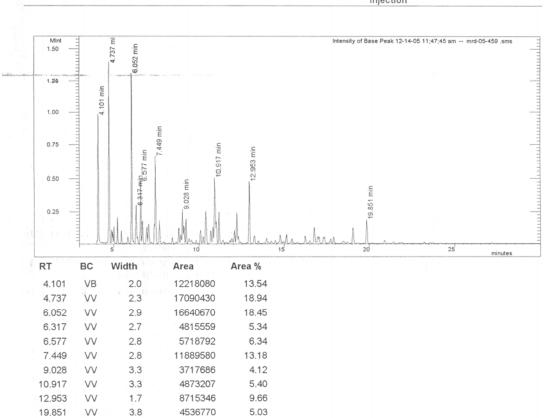
Inst. Method:

C:\SaturnWS\Volatiles

Instrument ID:

Saturn GC/MS #1

Sample Name:


Characterization.mth

MRD-05-459

Inj. Notes:

MRD-05-459 (naphtha)

initial characterization 0.1uL neat injection

APPENDIX C- TEST SUBSTANCE CHARACTERIZATION (CONT'D)

FINAL TOTAL ION CHROMATOGRAM Figure C-6

AREA PERCENT REPORT

Data File Name: c:\saturnws\2-6-06 12;20;22 pm -- Acquisition Date: 2/6/06 12:20:23 PM

mrd-05-459 .sms

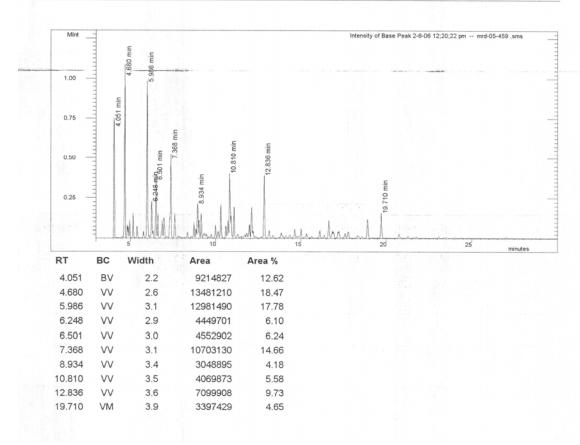
C:\SaturnWS\Volatiles

C:\SaturnWS\Volatiles
Characterization.mth

Instrument ID:

Saturn GC/MS #1

Sample Name: MRD-05-459


Inst. Method:

i-459 Inj. Notes:

MRD-05-459 (naphtha)

final characterization 0.1uL neat

injection

APPENDIX D – TEST SUBSTANCE, ELEMENTAL ANALYSIS

Page 1 of 1
P.O. Box 470, Solem Industrial Park, Bldg. 5
Whitehouse, NJ 08888
(908) 534-4445 FAX (908) 534-1054
www.QTIonline.com Info@QTIonline.com

EXXONMOBILE BIOMEDICAL SCIS 1545 RTE 22 E ANNANDALE NJ 08801

23-May-06

ANALYTICAL REPORT

Sample number	%C	%H	%N	%O
©ACETANILIDE	71.05	6.72	10.21	11.60
MRD 05-459	85.54	14.35	0.08	< 0.1

Ostandard results accepted. ESF 150,06

/mk

Ebs_14

^{**}Reissue of original reports dated 12/14/05 & 12/19/05 to combine results of both reports and remove the name in the address. Also, to correct the sample ID number.

READY BIODEGRADABILITY: OECD 301F MANOMETRIC RESPIROMETRY TEST on HIGH NAPHTHENIC, HEAVY, STRAIGHT-RUN NAPHTHA STUDY # 0545979, MRD-05-459

APPENDIX E - SODIUM BENZOATE CERTIFICATE OF ANALYSIS

Certificate of Analysis

Product Name Sodium benzoate Product Number 10,916-9 Product Brand ALDRICH CAS Number 532-32-1 Molecular Formula C₇H₅NaO₂ Molecular Weight 144.10

TEST	SPECIFICATION	LOT 09519HA RESULTS

APPEARANCE WHITE POWDER OR CRYSTALS CONFORMS TO CONFORMS TO

INFRARED SPECTRUM STRUCTURE AND STRUCTURE AND STANDARD. STANDARD

TITRATION98.5% - 101.5% (WITH HCLO4)
HCLO4)
99.1% (WITH HCLO4)

HIGH PRESSURE LIQUID CHROMATOGRAPHY

98.5% (MINIMUM)

99.5%

QUALITY CONTROL ACCEPTANCE DATE

JULY 2002

APPENDIX F - PROTOCOL

- PROTOCOL -

Study Title: READY BIODEGRADABILITY: OECD 301F

Manometric Respirometry Test

EMBSI Study Number: 0545979

Test Substance: MRD-05-459

Date: 30-Nov-05

Room Number: LG361

Proposed Key Dates:

Experimental Start22-Dec-05Experimental Termination19-Jan-06Draft Report Completion23-Feb-06Final Report Completion7-Apr-06

Approved By:

7 Dec 05 Date

ExxonMobil Biomedical Sciences, Inc. 1545 Route 22 East, P.O. Box 971 Annandale, New Jersey 08801-0971

12/2/05 Date

SAFETY FIRST

READY BIODEGRADABILITY: MANOMETRIC RESPIROMETRY TEST MRD-05-459, STUDY NUMBER 0545979

INTRODUCTION

Objective

This study will be conducted for the Sponsor in order to evaluate the potential of the test substance to biodegrade in an aerobic, aqueous environment for use in environmental hazard assessment.

Sponsor

American Petroleum Institute 1220 L Street, NW Washington, DC 20005-4070

Testing Facilities

ExxonMobil Biomedical Sciences Inc. (EMBSI) Laboratory Operations 1545 Route 22 East, P.O. Box 971 Annandale, New Jersey 08801-0971

Quantitative Technologies Inc. (QTI) (Elemental Analysis Only) P.O. Box 470 Salem Industrial Park, Bldg 5 Whitehouse, New Jersey 08888

Compliance

This study will be performed in general agreement with the OECD 301F test method¹ with the exceptions listed on page 8.

The study will be conducted in compliance with OECD and USEPA Good Laboratory Practice (GLP) standards^{2,3}.

Justification for Selection of Test System

Selection of the aerobic aquatic biodegradation test is based upon the OECD Guideline¹. The test method determines biodegradability by measuring oxygen consumption in a system consisting of an activated sludge supernatant, test substance and a nutrient source. Further, activated sludge has historically been used to evaluate the persistence of chemicals in the environment.

Justification of Dosing Route

The test substance could possibly be found in aqueous solution in a wastewater treatment facility.

Page 2 of 13

READY BIODEGRADABILITY: MANOMETRIC RESPIROMETRY TEST MRD-05-459, STUDY NUMBER 0545979

MATERIALS AND METHODS

Test Substance Identification

EMBSI code MRD-05-459 Sponsor's Identification

High Naphthenic, Heavy, Straight-Run Naphtha

Storage Conditions: The neat test substance will be stored at room temperature.

Characterization of Test Substance

Pre-test and post-test characterization and stability analysis will include the following determinations: FT-IR and UV-Vis spectra, density, physical-state, miscibility in water, methanol and/or hexane and GC-MS "fingerprint" of the neat test substance. The GC-MS fingerprint is run against an ASTM hydrocarbon standard mixture. The ASTM D2887 standard will be applied for higher boiling mixtures with compounds eluting between approximately n-octane (n-C8) and n-triacontane (n-C30). For more volatile test mixtures, an ASTM D3710 standard is used for compounds eluting between approximately n-heptane (n-C6) and n-pentadecane (n-C15). Due to the complex nature of the test substance, no attempt will be made to identify specific hydrocarbon components. Instead, an area percent report will be generated for both the pre- and post-test analysis to demonstrate stability of the test substance over the testing period. Documentation of characterization and stability assessment will be maintained at the testing facility and the results appended to the final report.

An aliquot of the test substance will be sent to Quantitative Technologies Inc. (QTI) for elemental analysis, specifically carbon, hydrogen, nitrogen and oxygen. The Carbon, Hydrogen, Nitrogen, and Oxygen will be determined using a Perkin-Elmer 2400 CHN Elemental Analyzer equipped with an oxygen accessory kit. For CHN the analyzer will use combustion to convert the sample elements to simple gases. Upon entering the analyzer, the sample will be combusted in a pure oxygen environment. The product gases will be separated under steady state conditions, and measured as a function of thermal conductivity. For oxygen, pyrolysis will be used to convert the oxygen to carbon monoxide which will be separated from the other pyrolozates under steady state conditions and measured as a function of thermal conductivity. This laboratory is not a GLP compliant facility and therefore may not have performed the analysis in a GLP compliant manner. However, a standard (acetanilide) will be employed to monitor the quality of the data. The manufacturer and a copy of the certificate of analysis will be included in the final report. If values are outside of the standard limits, the analysis will be repeated.

The methods of synthesis, fabrication, and/or derivation of the test substance will be maintained by the sponsor. The test substance, as received, will be considered the "pure" substance.

READY BIODEGRADABILITY: MANOMETRIC RESPIROMETRY TEST MRD-05-459, STUDY NUMBER 0545979

MATERIALS AND METHODS (CONT'D)

Positive Control Substance

Substance Identification: Sodium Benzoate

Manufacturer - Aldrich Chemical Company

Storage Conditions: Neat substance will be stored at room temperature.

Documents which detail the stability, identity, solubility, strength, purity and composition or other characteristics which appropriately identify the positive control substance were provided by the manufacturer. The document is a certificate of analysis. Copies of the document will be included in the raw data and final report.

Vehicle

Glass distilled water will be used as the vehicle. The glass distilled water is prepared from UV sterilized deionized well water that is treated and distributed throughout the testing facility via PVC and stainless steel pipes. The feed water for the deionized water system is analyzed by Accutest®, 2235 Route 130, Dayton, New Jersey 08810. Results of the water analyses are maintained at the testing facility. There are no known contaminants in the water believed to be present at levels that may interfere with this study. Contaminant analysis of the water is not performed in a GLP compliant manner. This is not believed to have an adverse affect on the study results. The laboratory is accredited by the National Environmental Laboratory Accreditation Conference (NELAC) and has been audited by ExxonMobil Biomedical Sciences, Inc. using the Quality Practices and Guidelines (QP & G v. 5.1). The analyses are performed using standard US EPA methods.

Inoculum

The inoculum will be fresh activated sludge obtained from the Clinton Sanitary Wastewater Treatment Plant, Annandale, New Jersey. This source has been selected since the treatment facility deals predominantly with domestic sewage as specified in the guideline. There are no known contaminants in the fresh activated sludge believed to be present at levels that may interfere with this study. Fresh activated sludge will be obtained on Day -1 of the Manometric Respirometry Test. The total suspended solids (TSS) concentration of the sludge will be confirmed and adjusted, if necessary, prior to use (3-5 g/L). A 10 mL aliquot of the mixed sludge will be filtered through a pre-weighed Whatman 934-AH filter pad in a Buchner filter and vacuum flask set up. The filter pad will be placed in an aluminum pan and dried in an oven set at $105^{\circ}\text{C} \pm 5^{\circ}\text{C}$ for at least one hour. After cooling, the filter will be reweighed and the TSS determined. This procedure will be performed in duplicate and the average value will be reported.

READY BIODEGRADABILITY: MANOMETRIC RESPIROMETRY TEST MRD-05-459, STUDY NUMBER 0545979

MATERIALS AND METHODS (CONT'D)

Inoculum (cont'd)

The sludge will be homogenized for 2 minutes in a blender at low speed. The homogenized sample will be allowed to settle for at least 30 minutes, after which the supernatant will be decanted (avoiding carry-over of sludge solids). Settling time will be dictated by the clarity of the supernatant. An aliquot of the supernatant will be used for final preparation of the test medium (see test medium preparation). An aliquot of the remaining supernatant will be used to determine microbial activity with an Easicult®-TTC dip slide. This will be accomplished by removing the agar stick from the culturing tube, and dipping the agar into the supernatant aliquot. Excess supernatant will be blotted off with a clean paper towel, and the agar stick will then be placed back into the culture tube. The whole unit will be placed into a dark Environmental Chamber for 48 hours at $20 \pm 1^{\circ}$ C. After 48 hours, the whole unit will be observed, and the density of the colonies growing on the medium will be compared to the model density chart provided by the supplier.

Solutions

Mineral Salt Solutions:

Phosphate buffer pH 7.2 Ferric chloride (0.025%) Magnesium sulfate (2.25%) Calcium chloride (2.75%)

The manufacturer and lot number for each solution will be recorded in both the raw data and the report. There are no known contaminants in the solutions believed to be present at levels that may interfere with this study. All solutions will be refrigerated when not in use.

Test Medium

The test medium will be prepared at least one day before the test begins. One or two carboys (glass or nalgene) will each be filled with sufficient volume of glass distilled water depending on the volume required for the number of replicate chambers being prepared. The following additions of mineral salts will be made to each carboy:

1 mL of magnesium sulfate solution per liter of glass distilled water 1 mL of calcium chloride solution per liter of glass distilled water 10 mL of phosphate buffer solution per liter of glass distilled water 1 mL of ferric chloride solution per liter of glass distilled water

READY BIODEGRADABILITY: MANOMETRIC RESPIROMETRY TEST MRD-05-459, STUDY NUMBER 0545979

MATERIALS AND METHODS (CONT'D)

Test Medium (cont'd)

Final preparation of the test medium is achieved on Day -1 by adding 10 mL of the activated sludge supernatant (see preparation as described in the inoculum section) per liter of glass distilled water to each carboy.

Sodium Benzoate Stock Solution: A stock solution of sodium benzoate will be prepared in glass distilled water. The stock solution will be refrigerated when not in use. Stock solution concentration will be confirmed by Total Organic Carbon (TOC) analysis as per SOP G.2.8.28. The pH of the stock will be measured, and adjusted to 7.4± 0.2 if necessary.

Test System

The test system will be considered as any combination of the following in a test container:

Test or Positive Control Substance
Test Medium (containing the following):
 Mineral Salt Solutions
 Activated Sludge Supernatant
 Glass Distilled Water

All test containers used in this study will be uniquely identified as to appropriate composition, i.e., Blank - 1, 2, 3; MRD-05-459 - 1, 2, 3; etc. More than one test substance may be tested concurrently using the same set of blanks and positive control substance test systems. All glassware will be washed with Chemsolve® glassware cleaner, then rinsed with glass distilled H₂O to remove any residual organic carbon prior to use. The glassware will be inspected for cleanliness before use. The manometric cells will be rinsed with two portions of acetone, then filled with soapy water and allowed to stand for a few hours. The cells will then be rinsed with glass distilled water and rinsed one more time with acetone then finally air dried.

READY BIODEGRADABILITY: MANOMETRIC RESPIROMETRY TEST MRD-05-459, STUDY NUMBER 0545979

EXPERIMENTAL PROCEDURE

Procedure Summary

The test procedure evaluates the ready biodegradability of a test substance by microorganisms in water. The consumption of oxygen is determined by measuring the quantity of oxygen (produced electrolytically) required to maintain constant gas volume in the respirometer flask, or from the change in volume or pressure (or a combination of the two) in the apparatus. Evolved carbon dioxide is absorbed in a solution of potassium hydroxide or another suitable absorbent. The amount of oxygen taken up by the microbial population during biodegradation of the test substance (corrected for uptake by blank inoculum, run in parallel) is expressed as a percentage of theoretical oxygen demand (ThOD). ThOD will be calculated based on the chemical structure supplied by the sponsor or elemental analysis, performed by QTI, and using the equation found in the OECD guideline¹. This test is performed in general agreement with the OECD guideline¹ with the following clarifications/exceptions:

Clarification

- 1. The apparatus is an electrolytic respirometer, manufactured by Co-ordinated Environmental Service, Ltd. (Kent, England). The system is based on a proven oxygen generating process coupled to a sensitive manometric cell. The sample is placed in a sample flask, which is then sealed by a manometric cell/CO₂ trap and immersed in a temperature stabilized water bath. For the duration of the experiment, the sample is stirred by a magnetically coupled stirrer. As the biodegradation process progresses, the microorganisms convert O₂ to CO₂. The CO₂ is absorbed by the alkali CO₂ trap and causes a net reduction in gas pressure within the sample flask. This pressure reduction is detected by the manometric cell and triggers the electrolytic process. This generates oxygen and restores the pressure in the sample flask. The magnitude of the electrolyzing current and the duration of the current is proportional to the amount of oxygen supplied to the microorganisms.
- 2. The test and positive control substance will be tested at concentrations of approximately 50 mg/L. Sodium Benzoate will be administered to the appropriate replicate chambers as an aliquot of an aqueous stock solution. The test substance will be administered neat by direct addition in a manner that will minimize loss due to volatilization. An aqueous stock solution will not be prepared for the test substance because of the low water solubility. Also no concentration verification will be performed since the test substance is poorly soluble in water.

READY BIODEGRADABILITY: MANOMETRIC RESPIROMETRY TEST MRD-05-459, STUDY NUMBER 0545979

EXPERIMENTAL PROCEDURE (CONT'D)

Clarification (cont'd)

- 3. The blank, positive control and test substance test solutions will be tested in triplicate.
- 4. Preparing the test medium containing the microorganisms on a large volume basis will minimize bias. In addition the test medium will be aerated for 24 hours to improve homogeneity and ensure random distribution of test organisms to all replicates. The pH of the test medium will be determined and adjusted if it falls outside the range of 7.4 ± 0.2. The initial pH of individual solutions will not be determined due to the poor solubility of the test substance in water.
- 5. Dissolved organic carbon (DOC) analysis will not be performed due to the poor solubility of the test substance.
- 6. The test duration (normally 28 days) may be shortened or extended based on the biodegradation curve.

Exceptions

- 1. No abiotic sterile or toxicity control treatments will be tested.
- 2. Test medium will be prepared on a large volume basis, aerated and aliquoted into each test container, instead of preparation in the individual replicates.
- 3. The commercial phosphate buffer, used in preparation of the test medium, has a pH value of 7.2 rather than 7.4. The phosphate buffer, purchased from VWR, has been approved by the American Public Health Association (APHA) for use in the Biological Oxygen Demand (BOD) analysis. The BOD buffer has the same composition as the buffer stated in the OECD guideline¹.
- 4. The inoculum will be mixed for 2 minutes in a blender at low speed, instead of medium speed.

READY BIODEGRADABILITY: MANOMETRIC RESPIROMETRY TEST MRD-05-459, STUDY NUMBER 0545979

EXPERIMENTAL PROCEDURE (CONT'D)

Preparation of the Test Systems

Test System Aerobic Respirometer	Test Substance Concentration	Test Medium
Blank - 1, 2, 3	None	Add 1 liter of test medium
Sodium Benzoate - 1, 2, 3	≈50 mg via stock solution	Add 1 liter of test medium
MRD-05-459 - 1, 2, 3	≈ 50 mg of test substance	Add 1 liter of test medium

The test systems will be assembled in accordance with the manufacturer's directions and labeled as shown above. Test systems will be prepared as indicated in the table above on Day 0. The test substance will be added directly into each replicate test flasks containing test medium with a syringe. The weight difference of the syringe will be recorded as the weight of test substance added to the flask. Each flask will be sealed immediately after addition of the test substance to avoid loss due to volatilization. Stirring will be initiated, the equipment will be checked to ensure no leaks are present, and oxygen uptake measurements will begin. No further attention is required other than printing the respirometer data and ensuring that adequate stirring is maintained during normal working hours. The water bath temperature of $22 \pm 1^{\circ}$ C will be monitored by the Watchdog V5 Monitoring System but manual temperature measurements may also be recorded. At the end of incubation, normally 28 days, the pH of the contents of the flasks will be measured.

Calculations

Percent biodegradation values are calculated by the respirometer software, using the ThOD, and the mass of test substance added. The ThOD will be calculated as specified in Annex IV of OECD guideline¹. The software incorporates the hourly logged oxygen uptake value along with the entered parameters into the following calculations to derive the percent biodegradation.

Constant =
$$100 \frac{1}{ThOD \ x \ mg \ test \ substance \ in \ vessel}$$

Percent Biodegradation (%) = $(mg\ O_2\ uptake\ by\ test\ substance\ -mean\ mg\ O_2\ uptake\ by\ blank)\ x$ constant

The mg of oxygen consumed by the blank represents the average oxygen consumption for the triplicate blank replicates. The mean and standard deviation of the percent biodegradation for each test substance will be calculated in Microsoft® Excel 97. Due to the calculation process of Microsoft® Excel 97 some rounding differences may be noted.

READY BIODEGRADABILITY: MANOMETRIC RESPIROMETRY TEST MRD-05-459, STUDY NUMBER 0545979

EXPERIMENTAL PROCEDURE (CONT'D)

Validity of Results

The test shall be considered valid if the difference of extremes of replicate values reported for the biodegradation of the test substance is less than 20% by Day 28 and if the reference substance reaches the pass level of 60% of the theoretical oxygen demand by Day 14. If either of these conditions is not met, the test should be repeated.

The oxygen uptake of the inoculum blank is normally 20-30 mg O_2/L and should not be greater than 60 mg/L in 28 days. Values higher than 60 mg/L require critical examination of the data and experimental technique. If the pH value is outside the range of 6-8.5 and the oxygen consumption by the test substance is less than 60%, the test should be repeated with a lower concentration of the test substance.

Classification of Ready Biodegradability

A test substance shall be classified as readily biodegradable if the percent biodegradation reaches 60% within 28 days and the 60% degradation has been attained within 10 days of exceeding 10% biodegradation.

READY BIODEGRADABILITY: MANOMETRIC RESPIROMETRY TEST MRD-05-459, STUDY NUMBER 0545979

REPORTS

After termination of the study, a final report, which includes the following information, will be submitted:

- 1. Signature of the study director, laboratory director and date.
- 2. Name of the study director and laboratory director.
- 3. Statements of results as mean percent of biodegradation for the test and positive control substance.
- 4. Name and address of the testing facility and sponsor.
- Identification of the test substance.
- 6. Positive control substance identification, lot number and manufacturer name.
- 7. The location of storage for neat test substance, raw data, and the final report.
- 8. Description of reagents and solutions.
- Key study dates.
- Inoculum information including location of source, handling, method of biomass determination, total suspended solids (TSS), and microbial concentration (CFU/mL).
- 11. Objectives and procedures stated in the approved protocol including any changes in the original protocol. A copy of the protocol and protocol amendments.
- 12. Circumstances, if any, which may have affected the quality or integrity of the data.
- 13. Description of methods used, including test apparatus description.
- 14. Amount of each test substance used and method of addition.
- 15. Incubation temperature range.
- 16. Description of calculations, summary and analysis of the data, and a graph of the percent biodegradation of each test substance versus time.
- 17. Q. A. and Compliance Statements.

READY BIODEGRADABILITY: MANOMETRIC RESPIROMETRY TEST MRD-05-459, STUDY NUMBER 0545979

QUALITY ASSURANCE

The Quality Assurance Unit of ExxonMobil Biomedical Sciences, Inc. will audit the protocol, conduct study based phase inspection(s) and audit the draft final report (before sponsor review) to assure that they are in conformance with the appropriate guidelines, company standard operating procedures (SOPs), and Good Laboratory Practice regulations.

RECORDS

All appropriate materials, methods and experimental measurements required in this protocol will be recorded and documented in the raw data. Any changes, additions or revisions of this protocol must be approved by the Study Director and the Sponsor Representative. These changes will be documented in writing, including the date, the justification for the change and the signatures of the Study Director and Sponsor Representative.

The protocol, final report, raw data or computer-generated listings of raw data, supporting study documentation and a non-study specific sample of the neat test substance will be maintained in the archives of the testing facility for 10 years, after which time the records will be offered to the sponsor prior to disposal.

REFERENCES

- Organization for Economic Cooperation and Development (OECD), Guidelines for the Testing of Chemicals, Ready Biodegradability, 301F Manometric Respirometry Test (1992).
- Organization for Economic Cooperation and Development, Principles of Good Laboratory Practice, C(97) 186/Final, 1997.
- United States Environmental Protection Agency (USEPA) Toxic Substances Control Act (TSCA), Good Laboratory Practice Standards, 40 CFR Part 792, 1989.

READY BIODEGRADABILITY: MANOMETRIC RESPIROMETRY TEST MRD-05-459, STUDY NUMBER 0545979

PERSONNEL

Study Director	
Sponsor Representative.	
Primary Study Technician	
Laboratory Coordinator	
Analytical Chemistry	
Compound Prep.	
QA	
Contract Administrator	

PROTOCOL CHANGE RECORD READY BIODEGRADABILITY:

Page 1 of 2

OECD 301F, Manometric Respirometry Test on High Naphthenic, Heavy, Straight-Run Naphtha

This record must be approved by the Sponsor Representative and the Study Director for all protocol changes made subsequent to initial distribution. Upon completion, a copy of this record must be distributed to all recipients of the protocol and the original submitted to the Archivist.

Study Number: 0545979 Revision Number: 1 Date: 15-Dec-05

Pg. 7 / Clarification:

Additional Statement:

The toxicity control will contain approximately 50 mg/L of both the test and positive control substances.

Pg. 8 / Clarification:

Previous Statement:

3. The blank, positive control and test substance test solutions will be tested in triplicate.

Revised Statement:

3. The blank, positive control, toxicity control and test substance test solutions will be tested in triplicate.

Pg. 9 / Preparation of the Test Systems

Previous Statement:

Test System Aerobic Respirometer	Test Substance Concentration	Test Medium
Blank - 1, 2, 3	None	Add 1 liter of test medium
Sodium Benzoate - 1, 2, 3	≈50 mg via stock solution	Add 1 liter of test medium
MRD-05-459 - 1, 2, 3	≈ 50 mg of test substance	Add 1 liter of test medium

Revised Statement:

Test System Aerobic Respirometer	Test Substance Concentration	Test Medium
Blank - 1, 2, 3	None	Add 1 liter of test medium
Sodium Benzoate - 1, 2, 3	≈50 mg via stock solution	Add 1 liter of test medium
Toxicity Control - 1, 2, 3	≈50 mg Sodium Benzoate via stock solution ≈ 50 mg of test substance	Add 1 liter of test medium
MRD-05-459 - 1, 2, 3	≈ 50 mg of test substance	Add 1 liter of test medium

PROTOCOL CHANGE RECORD READY BIODEGRADABILITY:

Page 2 of 2

OECD 301F, Manometric Respirometry Test on High Naphthenic, Heavy, Straight-Run Naphtha

Study Number: 0545979 Revision Number: 1 Date: 15-Dec-05

Pg. 10 / Validity of Results:

Additional Statement:

The test substance will be considered inhibitory if the toxicity test systems, containing both the test and positive control substance, do not attain 25% biodegradation by Day 14.

Pg. 11 / REPORTS:

Previous Statement:

3. Statements of results as mean percent of biodegradation for the test and positive control substance.

Revised Statement:

3. Statements of results as mean percent of biodegradation for the test and positive control substance and the toxicity control.

Justification: addition of toxicity control treatment

Required signatures:

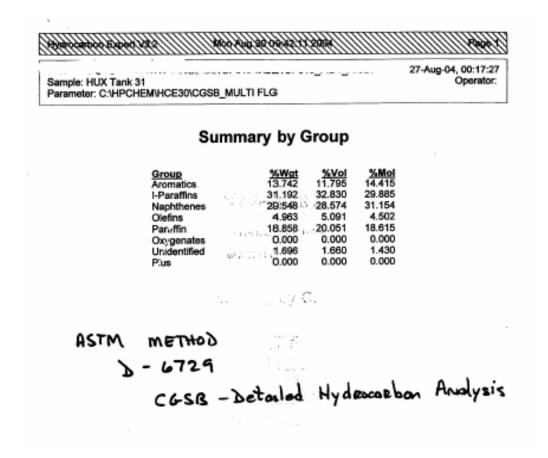
1/09/06 Date

12 Jan 06 Date

- 1. Detailed Hydrocarbon Analyses Refinery Sample
- 2. Detailed Hydrocarbon Analyses Comparison of Three Sample Drums
- 3. Intertek Caleb Brett Sample, Physical-Chemical Analyses
- 4. Intertek Caleb Brett Reid Vapor Pressure Analysis

Background

The chemical analyses cited within this appendix was conducted to provide the American Petroleum Institute's (API) Petroleum HPV Testing Group with a set of pre-test physical-chemical data on a sample of high naphthenic naphtha (CAS Number 64741-78-2)*. This gasoline blending stream was selected for specific tests described in the Gasoline Blending Streams Test Plan and submitted to the U.S. Environmental Protection Agency (EPA) as part of EPA's High Production Volume (HPV) test program.


The data are presented in chronological order in which the analyses were performed and includes the following:

- 1. Detailed hydrocarbon analysis of the high naphthenic naphtha test sample performed by the refinery. The analysis presents a component list of the molecular composition of the test sample. The composition was additionally summarized by both hydrocarbon group type (e.g., aromatics, iso-paraffins, naphthenes, olefins, paraffins, oxygenates and unidentified components) and carbon number.
- 2. Detailed hydrocarbon analyses of a sample from each of three drums received by the archival facility. It was discovered by the archival facility that one drum was only partially filled. Due to a concern for potential loss of volatile components in the drum headspace, a sample from each of the three drums was returned to the refinery for detailed hydrocarbon analyses. Comparison of the proportions of hydrocarbon group type in each sample showed no appreciable differences in component proportions among the three drums.
- 3. Physical-chemical analyses conducted by Intertek Caleb Brett (Deer Park, Texas). This suite of 10 physical-chemical tests defined the pre-test characterization of the test sample. A sample was taken from one of the three drums and was considered to represent the entire lot of material.
- 4. Analysis of Reid vapor pressure by Intertek Caleb Brett. This was run as a check against the dry vapor pressure performed in Intertek Caleb Brett's initial characterization. Results by both methods showed a relatively low vapor pressure that fell at the low end of each method's limit of sensitivity.

Revision 1: November 18, 2008

^{*} An explanation of the Chemical Abstract Service (CAS) number designation for this test sample is provided in Appendix H.

1. Detailed Hydrocarbon Analyses – Refinery Sample

1. Detailed Hydrocarbon Analyses – Refinery Sample (Cont'd)

ample: HUX Tank arameter: C:\HPC	31 CHEM/HCE30/CGSE	-	27-AL	ig-04, 00:17 Opera						
Composite by Carbon										
	Group Aromatics	C# C6 C7	%Wgt 0.109 3.707	%Vol 0.093 3.191	%Mol 0.157 4.510					
		C8	4.912	4.223	5.186					
		C9	3.881	3.315 0.888	3.623 0.863					
		C10 C11	0.099	0.085	0.076					
	I-Paraffins	C6	0.159	0.179	0.206					
		C7	7.875	8.611 10.344	8.809 9.598					
		.C9	9.781 8.771	9.039	7.664					
		C10	4:020	4.079	3.167					
		C11 C12	0.578	0.569	0.435					
			Zooda							
	Naphthenes	C6 C7	1.183 12.754	1.159 12.483	1.575 14.561					
		C8	11.109	10.699	11.100					
		C9 C10	3.605 0.897	3.396 0.837	3.201 0.717					
			0.204							
	Olefins	C7 C8	0.200	0.210 0.896	0.201 0.859					
		C9	3.629	3.709	3.223					
		C10	0.274	0.277	0.219					
	Paraffin	.C6	0.183	0.207 7.339	0.239 7.525					
		C7 C8	6.727 5.571	5.913	5.466					
		C9	4.325	4.495	3.780					
		C10 C11	1.893 0.154	1.935 0.155	1.491 0.110					
		C12	0.005	0.005	0.003					
		200	0.00							
			1163							
			1.0							
ecovery = 100.00			1 5 7							

1. Detailed Hydrocarbon Analyses – Refinery Sample (Cont'd)

Hydrocarboo Expect V3.2 Moo Aug 30 04:42 11 2004	Page I
Sample: HUX Tank 31 Parameter: C:\HPCHEM\HCE30\CGSB_MULTI FLG	27-Aug-04, 00:17:27 Operator:

Component List

Pk#	Time	Group		ponent	%Wgt 0.008	%Vol 0.009	%Mol 0.010
1	27.947	16		2,3-Dimethylbutane 2-Methylpentane	0.065	0.075	0.085
2	29.002	16 16		3-Methylpentane	0.086	0.096	0.111
3	31.636			n-Hexane	0.183	0.207	0.239
4	35.357	P6			0.679	0.676	0.904
5	40.146	N6	112	MayC5+2,2DMC5	0.143	0.158	0.160
6	41.766	17	116	2,4-Dimethylpentane	0.109	0.093	0.157
7	45.127	A6	130	Benzene	0.046	0.050	0.052
8	46.727	17	134	33DMC5+5m1C6ene	0.504	0.483	0.671
9	46.992	N6	136	Cyclohexane	4.159	4.571	4.652
10	50.190	17	156	2-MethylC6 + C7-Olefin	4.100	4.071	4.002
	E2 040	17	166	3-Methylhexane	3.284	3.572	3.673
11	52.019	N7	172	t-1,3-DimethylcyC5	1.487	1.472	1.698
12	52.814	N7	174	c-1,3-DMcyclopentane	1.349	1.344	1.540
13	53.391		176		1.632	1.621	1.863
14	54.007	N7 17	180	3-Ethylpentane	0.244	0.260	0.273
15	54.168			2.2.4-Trimethylpentane	0.040	0.043	0.039
16	54.624	18	186		0.008	800.0	0.009
17	55.001	07	189	C7-Olefin	6.727	7.339	7.525
18	57.634	P7	200	n-Heptane	7.067	6.858	8.068
19	60.995	N7	222	Methylcyclohexane	0.486	0.485	0.485
20	61.881	N8	224	1,1,3-TrimethylcycloC5	0.400	0.400	0.400
21	62.330	18	226	2.2-Dimethylhexane	0.062	0.066	0.061
22	63.709	N7	234	Ethylcyclopentane	1.219	1.188	1.392
23	64.404	18	240	2,2,3-Trimethylpentane	0.011	0.012	0.011
24	64.637	18	245		0.504	0.539	0.494
25	64.970	18	250	2.4-Dimethylhexane	0.594	0.633	0.583
26	65.777	N8	260	t.c-1,2,4-TriMcyC5	0.949	0.948	0.948
27	66.207	18	265	3,3-DMC6 + C8-olefin	0.078	0.081	0.076
28	67.294	N8	278	t.c-1,2,3-TrilMcycloC5	0.659	0.653	0.658
29	67.933	18	292	2,3,4-Trimethylpentane	0.067	0.069	0.065
30	68.463	A7	300	Toluene	3.707	3.191	4.510
30	00.400			La partir de			
31	69.951	08	312	C8-Olefin	0.198	0.207	0.197
32	70.283	18		2.3-Dimethylhexane	0.397	0.416	0.390
33	70.428	18		2-M-3-Epentane	0.159	0.166	0.157
34	71,621	18		2-Methylheptane	3.088	3.301	3.030
35	71.845			4-Methylheptane	1.026	1.062	1.007
36	72.065				0.192	0.202	0.192
37	72.188			C8-Olefins	0.162	0.170	0.162
38	72,706				1.968	1.866	1.967
39	72.903				2.529	2.673	2.482
38	12.000	10	000		_		

Recovery = 100:00

1. Detailed Hydrocarbon Analyses – Refinery Sample (Cont'd)

iample: HUX	Tank 31					27-Aug-	04, 00:17:2 Operator
arameter: C:	HPCHEM	NHCE30V	CGSB	_MULTI FLG			
			C	Component List			
Pk#	Time	Group	Com	ponent	%Wat	%Vol	%Mol
40	73.052	18	338	3-Ethylhexane	1.226	1.281	1.203
41	73.918			C8-Olefin	0.252	0.263	0.251
42	74.737	N8	352	c1Ethyl-3-methylcyC5	0.814	0.788	0.813
43	75.091		356	t-1-E-3-McyC5	0.749	0.727	0.748
44	75.307		360	t-1-E-2-MoyC5	0.715	0.691	0.714
45	75.575			1-M-1-EcycloC5	0.077	0.073	0.077
46	75.992	N3		t-1,2-DiMcycloC6	0.872	0.839	0.871
47	76.945			t-1,3-DiMcycloC6	0.070	0.067	0.070
48	77.232	N8		c-1,4-DiMcycloC6	1.317	1.262	1.316
49	77.480	P8	400	n-Octane	5.571	5.913	5.466
			440	C9-Olefin	0.173	0.179	0.153
50	78.324		410	C9-Olefin	0.173	0.121	0.104
51	78.461		412		0.024	0.025	0.021
52	79.045		418		0.053	0.055	0.046
53	79.375			entified	0.049	0.051	0.043
54	79.913	19	424		0.249	0.256	0.248
55	79.980			cis-2-Octene	0.249	0.250	0.049
56	80.445		428	2,2,3,4-TetraMC5	0.030	0.316	0.339
57	80.823		432		0.339	0.439	0.367
58 59	81.055 81.333	19	434 436	2,4-Dimethylheptane C9-Olefin	0.070	0.438	0.062
-				and the second second	0.005	4 004	2.093
60	81.647	N8	440	Ethylcyclohexane	2.095	1.984	
61	81.862	19		2-Methyl-4-Ethylhexane	0.056	0.058	0.049
62	82.017		446		0.829	0.859	0.117
63	82.179		449		0.131	0.135	0.836
64	82.450			C9-Olefins	0.941	0.967 0.176	0.152
65	82.793		454		0.171		0.628
66	82.940		458	2,5 & 3,5-DMheptane	0.718	0.739	0.020
67	83.106		460		0.122	0.126	0.181
68	83.230	19		3,3-Dimethylheptane	0.207	0.214	0.290
69	83.405	?	Unio	lentified	0.332	0.344	0.280
70	83.633	19	466	C9-Isoparaffin Ethylbenzene	0.218	0.223	0.190
71	84.220	A8	475	Ethylbenzene	1.024	0.882	1.082
72	84.401	N9	480	t-1,2,4-TrimethylcyC6	0.352	0.336	0.312
73	84.624		485		0.625	0.631	0.546
74	84.885			C9-Olefins	0.087	0.089	0.077
75	85.163		495		0.153	0.153	0.134
76	85.445		500	m-Xylene	2.000	1.728	2.112
77	85.583		502		0.710	0.615	0.749
78	85.750		503		0.518	0.530	0.453
				Commence of March			
Recovery = 100.00	00						

1. Detailed Hydrocarbon Analyses – Refinery Sample (Cont'd)

Sample: HUX	Tank 31	NUCESON	0000	_ S_MULTI FLG		27-Aug-	04, 00:17:27 Operator:
arameter: C:	INFUNEM	MCESON	COSE	_mocnitico			
			(Component List			
Pk#	Time	Group		ponent	%Wgt	%Vol	%Mol
79	85.998	19		3,4-Dimethylheptane	0.064	0.066	0.056
80	86.133	?		entified	0.067	0.069	0.060
81	86,189	O9		C9-Olefin	0.150	0.154	0.134
82	86.387	19	510	3-Methyl-3-ethylhexane	0.246	0.248	0.215
83	86.552	19	516	4-Ethylheptane	0.101	0.104	0.089
84	86.814	19		4-MC8+C9-Olefin	0.884	0.916	0.773
85	86.954	19			1.215	1.275	1.061
86	87.260	?		entified	0.033	0.035	0.029
87	87.318	19		C9-Isoparaffin	0.139	0.144	0.122
88	87.644	19	528	3-Ethylheptaine	0.371	0.379	0.324
89	87.814	19	530	3-Methyloctane	1.431	1.473	1.250
90	87.888			C9-Olefin	0.137	0.139	0.121
91	88.061			c-1,2,4-TriMcyC6	0.092	0.088	0.082
92	88.310	N9	545	1,1,2-TriMcycloC6	0.149	0.145	0.132
93	88.407	8A		o-Xylene	1.178	0.999	1.243
94	88.539			C9-Olefin	0.089	0.090	0.079
95	88.658			C9-Olefin	0.151	0.154	0.134
96	88.869	09		C9-Olefin	0.021	0.021	0.018
97	88.945	?		lentified	0.021	0.021	0.019
98	89.236	N9	568	t-1-E-4-M-cyC6?	0.532	0.498	0.473
00	80.300	N9	570	c-1-E-4-McyC6?	0.820	0.767	0.728
99	89.390	19		C9-Isoparaffin	0.427	0.435	0.373
100	89.684		675	1-Nonene	0.099	0.101	0.088
101	90.006			Isobutylcyclopentane	0.146	0.139	0.130
102	90.177	N9		dentified	0.069	0.066	0.062
103	90.262 90.329	ź	1.1-1	land/Find	0.015	0.015	0.014
104 105	90.965		590	cis-3-Nonenie	0.066	0.067	0.058
106	91.096	. 19	595	C9-Isoparaffin	0.019	0.019	0.016
100	91.090		000	- Morana	4.325	4 495	3.780

4.495

0.516

0.157

0.016

0.113

0.030

0.111

0.320

0.252

0.213

0.131

4.325

0.511

0.170

0.017

0.130

0.029

0.117

0.316

0.249

0.229

0.128

3.780

0.453

0.151

0.015

0.122

0.026

0.104

0.281

0.221

0.204

0.101

Recovery = 100.00

107

108

109

110

111

112

113

114

115

116

117

91.328

91.746

92.094

92.300

92.577

92.830

92.901

93.051

93.288

93.563

93.819

P9 600 n-Nonane

O9 604 trans-2-Nonene

N9 606 1-M-1-Ecyclohexane N9 608 1 -M-2-PcycloC5

N9 620 tert-Butylcyclopentane

N9 626 Isopropylcyclohexane

110 630 2,2-Dimethyloctane

A9 616 Isopropylbeinzene

O9 618 cis-2-Nonene

O9 622 C9-Olefins O9 624 C9-Olefin

1. Detailed Hydrocarbon Analyses – Refinery Sample (Cont'd)

Hydrocarbon Expert V32 Mon Aug 30 06:42:YX 2004	Kapa X
Sample: HUX Tank 31 Parameter: C:\HPCHEM\HCE30\CGSB_MULTLFLG	!7-Aug-04, 00:17:27 Operator:

Component List

Pk#	Time	Group	Component	%Wat	%Vol	%Mol
118	93.970	2	Unidentified	0.021	0.021	0.016
119	94.069	,	Unidentified	0.016	0.017	0.013
120	94.290	?	Unidentified	0.102	0.096	0.082
121	94.370	N10		0.247	0.232	0.197
122	64,520	N9	636 sec-Butylcyclopentane	0.567	0.536	0.503
123	94.694	110	638 2.6-Dimethyloctane	0.097	0.100	0.077
124	94,847	110	640 2.5-Dimethyloctane?	0.109	0.110	0.086
125	94,956	N9	642 Butylcyclopentane	0.310	0.294	0.275
126	95.143	?	Unidentified	0.099	0.093	0.088
127	95.399	110	646 3,6-Dimethylioctane	0.730	0.737	0.575
128	95.546	N9	648 1-M-2-EcyclioC6	0.104	0.095	0.092
129	95.694	?	Unidentified	0.054	0.050	0.048
130	95.825	010	650 C10-Olefin	0.133	0.134	0.107
131	96.014	A9	651 Propylbenzene	0.470	0.407	0.438
132	96.232	110	652 3,6-Dimethyloctane	0.449	0.455	0.354
133	96,471	110	653 3-Methyl-5-ethylheptane	0.074	0.074	0.058
134	96.607	O10	654 C10-Olefin	0.100	0.101	0.080
135	96,860	A9	655 1-Ethyl-3-methylbenzene	0.733	0.632	0.683
136	97.093	A9	656 1-Ethyl-4-methylbenzene	0.417	0.362	0.389
137	97.276	?	Unidentified	0.026	0.023	0.024
			657 C10-Naphthene			
138	97.623	N10	657 C10-Naphthene	0.081	0.076	0.065
139	97.703	A9	658 1,3,5-Trimethylbenzene	0.604	0.521	0.564
140	97.974	110		0.055	0.055	0.043
141	98.115	?	Unidentified	0.074	0.075	0.058
142	98.212	110		0.231	0.235	0.182
143	98.402	110		0.556	0.563	0.438
144	98.676	110		0.492	0.504	0.387
145	98.783	- A9		0.332	0.280	0.309
146	99.047	N10		0.148	0.136	0.118
147	99.231	?	Unidentified	0.025	0.025	0.020
			1 100 Louis (1976)	0.400	0.489	0.378
148	99.375	110		0.480	0.489	0.065
149	99.533	?		0.081	0.093	0.003
150	99.554	. ?	Unidentified	0.093	0.093	0.033
151	99.705	O10		0.041	0.120	0.093
152	99.854	?		0.110	0.052	0.040
153	100.159	110		0.750	0.639	0.700
154	100.404	A9		0.750	0.133	0.145
155	100.579	?		0.130	0.205	0.159
156	100.749	110	674 C10-Isoparaffin	0.202	0.200	0.100

1. Detailed Hydrocarbon Analyses – Refinery Sample (Cont'd)

Pk# Time	4, 00:17:2 Operato	27-Aug-0	,,	B_MULTI FLG	CGSB	VHCE30V	Tank 31 VHPCHEM	mple: HUX rameter: C:				
Pk# Time												
157 100.899 110 675 C10-Isoparaffin 0.176 0.179 0.176 101.052 110 676 Isobutylcyclohexane 0.077 0.077 0.072 0.160 101.342 N10 677 C10-Isoparaffin 0.071 0.072 0.160 101.342 N10 677 C10-Isoparaffin 0.071 0.072 0.161 101.492 110 678 C10-Isoparaffin 0.031 0.032 0.162 0.1616 110 682 C10-Isoparaffin 0.031 0.032 0.163 101.815 A10 690 Isobutylbenzene 0.046 0.040 0.163 102.309 P10 700 n-Decane 1.893 1.935 1.165 102.309 P10 700 n-Decane 1.893 1.935 1.165 102.602 111 702 C11-Isoparaffin 0.077 0.078 0.019 0												
158	%Mol 0.138							Pk#				
159 101.239	0.059											
180	0.016											
161	0.057											
162	0.025											
163 101.815 A10 690 Isobutylbenzene 0.046 0.040 0.164 102.017 I10 694 C10-Isoparaffin 0.077 0.078 0.165 102.309 P10 700 n-Decane 1.893 1.935 1.166 102.602 I11 702 C11-Isoparaffin 0.019 0.019 0.019 1.66 102.602 I11 702 C11-Isoparaffin 0.019 0.019 0.019 0.019 1.67 102.817 ? Unidentified 0.033 0.034 0.025 0.	0.007											
164 102.017	0.039											
165 102.309 P10 700 n-Decane 1.893 1.935 1. 166 102.602 I11 702 C11-Isoparaffin 0.019 0.019 0.019 167 102.817 ? Unidentified 0.033 0.034 0. 168 103.062 I11 704 C11-Isoparaffin 0.025 0.025 0.025 1. 169 103.257 A9 705 1.2,3-Trimethylbenzene 0.276 0.230 0. 170 103.454 ? Unidentified 0.020 0.017 0. 171 103.531 A10 706 1-M-3-isopropylbenzene 0.016 0.014 0. 172 103.688 A10 708 1-M-4-isopropylbenzene 0.039 0.034 0. 173 103.871 I11 709 C11-Isoparaffin 0.085 0.086 0. 174 104.089 I11 710 C11-Isoparaffin? 0.012 0.012 0. 175 104.280 ? Unidentified 0.016 0.012 0. 176 104.426 A9 712 2,3-Dihydroindene 0.169 0.131 0. 177 104.724 N10 714 sec-Butylcyclohexane 0.238 0.218 0. 178 104.804 ? Unidentified 0.036 0.037 0. 179 104.992 ? Unidentified 0.008 0.007 0. 180 105.219 I11 720 3-Ethylnonane 0.061 0.062 0. 181 105.330 I11 721 C11-Isoparaffin 0.038 0.039 0. 182 105.484 N10 722 C10-Naphthene 0.112 0.102 0.122 0. 184 105.990 A10 724 1,3-Diethylbenzene 0.112 0.122 0. 185 106.244 A10 725 1-M-3-propylbenzene 0.051 0.044 0.051 0.0644 A10 725 1-M-3-propylbenzene 0.051 0.044 0.051 0.0698 1.06.432 A10 726 1,4-Diethylbenzene 0.061 0.053 0.051 0.06996 ? Unidentified 0.029 0.025 0.051 0.06996 ? Unidentified 0.029 0.025	0.059											
166 102.602	1,491											
167 102.817 ? Unidentified 0.033 0.034 0.036 103.062 111 704 C11-Isoparaffin 0.025 0.025 0.025 169 103.257 A9 705 1.2,3-Trimethylbenzene 0.276 0.230 0.017 170 103.454 ? Unidentified 0.020 0.017 0.020 0.017 171 103.531 A10 706 1-M-3-isopropylbenzene 0.018 0.014 0.015 172 103.688 A10 708 1-M-4-isopropylbenzene 0.039 0.034 0.017 173 103.871 111 709 C11-Isoparaffin 0.085 0.086 0.017 174 104.089 111 710 C11-Isoparaffin 0.085 0.086 0.012 175 104.280 ? Unidentified 0.016 0.012 0.012 175 104.280 ? Unidentified 0.016 0.012 0.016 0.015 104.426 A9 712 2,3-Dihydroindene 0.169 0.131 0.017 178 104.724 N10 714 sec-Butylcyclohexane 0.238 0.218 0.037 179 104.992 ? Unidentified 0.036 0.037 0.036 0.037 179 104.992 ? Unidentified 0.036 0.037 0.036 105.219 111 720 3-Ethylnonane 0.061 0.062 0.036 105.219 111 720 3-Ethylnonane 0.061 0.062 0.018 105.330 111 721 C11-Isoparaffin 0.038 0.039 0.039 1182 105.484 N10 722 C10-Naphtheine 0.112 0.103 0.038 105.802 111 723 C11-Isoparaffin 0.122 0.122 0.122 184 105.990 A10 724 1.3-Diethylbenzene 0.051 0.044 0.048 106.432 A10 725 1-M-3-propylbenzene 0.051 0.044 0.049 106.432 A10 726 1.4-Diethylbenzene 0.067 0.058 0.051 189 106.836 A10 729 3.5-DM-1-Eibenzene 0.067 0.058 0.029 0.025 0.019 107.711 771 771 772 C11-Isoparaffin 0.029 0.025 0.025 191 107.116 A10 730 1.2-Diethylbenzene 0.067 0.058 0.029 0.025 0.019 107.771 111 732 C11-Isoparaffin 0.031 0.031 0.031 193 107.560 A10 736 C10-Aromatic 0.033 0.028 0.028	0.013											
167 102.817 ? Unidentified 0.033 0.034 0.025 168 103.062 I11 704 C11-Isoparaffin 0.025 0.025 0.025 169 103.257 A9 705 1,2,3-Trimethylbenzene 0.276 0.230 0. 170 103.454 ? Unidentified 0.020 0.017 0. 171 103.531 A10 706 1-M-3-isopropylbenzene 0.016 0.014 0. 172 103.688 A10 708 1-M-4-isopropylbenzene 0.039 0.034 0. 173 103.871 I11 709 C11-isoparaffin 0.065 0.065 0.068 0. 174 104.089 I11 710 C11-isoparaffin 0.016 0.012 0. 175 104.280 ? Unidentified 0.016 0.012 0. 176 104.724 N10 714 sec-Butylcyclidhexane 0.238 0.218 178 104.892 ? Unidentif	0.013	0.018	0.019	C11-Isoparamn	702	111	102,602	166				
168 103.062	0.024	0.034	0.033	indified	Unide	2	100 917	407				
169 103.257 A9 705 1,2,3-Trimethylbenzene 0.276 0.230 0.170 103.454 ? Unidentified 0.020 0.017 0.171 103.531 A10 706 1-M-3-isopropylbenzene 0.016 0.014 0.172 103.688 A10 708 1-M-4-isopropylbenzene 0.039 0.034 0.173 103.871 111 709 C11-isoparaffin 0.085 0.085 0.086 0.174 104.089 111 710 C11-isoparaffin? 0.012 0.012 0.175 104.280 ? Unidentified 0.016 0.012 0.176 104.426 A9 712 2,3-Dihydroindene 0.169 0.131 0.177 104.724 N10 714 sec-Butylcyclidhexane 0.238 0.218 0.178 104.892 ? Unidentified 0.036 0.037 0.179 104.992 ? Unidentified 0.008 0.007 0.180 105.219 111 720 3-Ethylnonane 0.061 0.062 0.181 105.330 111 721 C11-isoparaffin 0.038 0.039 0.039 0.182 105.484 N10 722 C10-Naphthene 0.112 0.103 0.183 105.802 111 723 C11-isoparaffin 0.038 0.039 0.188 105.890 A10 724 1,3-Diethylbenzene 0.051 0.044 0.185 106.244 A10 725 1-M-3-propylbenzene 0.051 0.044 0.186 106.432 A10 726 1,4-Diethylbenzene 0.067 0.058 0.051 0.069 0.051 0.06996 ? Unidentified 0.029 0.025 0.051 0.06996 ? Unidentified 0.029 0.025 0.025 0.025 0.025 0.075 0.031	0.018					111						
170 103.454 ? Unidentified 0.020 0.017 0.01 171 103.531 A10 706 1-M-3-isopropylbenzene 0.016 0.014 0.01 172 103.688 A10 708 1-M-4-isopropylbenzene 0.039 0.034 0.01 173 103.871 I11 709 C11-isoparaffin 0.085 0.096 0.012 174 104.089 I11 710 C11-isoparaffin? 0.012 0.012 0.012 175 104.280 ? Unidentified 0.016 0.012 0.016 0.012 0.016 0.012 0.016 0.012 0.016 0.012 0.016 0.012 0.016 0.012 0.016 0.012 0.016 0.012 0.016 0.012 0.011 0.016 0.012 0.011 0.016 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.013 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.013	0.257			1 2 3-Trimethylbenzene	705	20						
171 103.531 A10 706 1-M-3-isopropylbenzene 0.016 0.014 0.0172 103.688 A10 708 1-M-4-isopropylbenzene 0.039 0.034 0.0173 103.871 111 709 C111-isoparaffin 0.085 0.086 0.0174 104.089 111 710 C11-isoparaffin 0.012 0.012 0.012 175 104.280 ? Unidentified 0.016 0.012 0.016 104.426 A9 712 2,3-Dihydroindene 0.169 0.131 0.0176 104.426 A9 712 2,3-Dihydroindene 0.169 0.131 0.0177 104.724 N10 714 sec-Butylcyclidhexane 0.238 0.218 0.018 104.904 ? Unidentified 0.036 0.037 0.036 105.219 111 720 3-Ethylnonane 0.061 0.062 0.007 180 105.219 111 720 3-Ethylnonane 0.061 0.062 0.007 181 105.330 111 721 C11-isoparaffin 0.038 0.039 0.039 0.039 182 105.484 N10 722 C10-Naphthene 0.112 0.103 0.039 183 105.802 111 723 C11-isoparaffin 0.122 0.122 0.122 184 105.990 A10 724 1,3-Diethylbenzene 0.051 0.044 0.044 0.044 185 106.244 A10 725 1-M-3-propylbenzene 0.051 0.044 0.044 185 106.432 A10 726 1,4-Diethylbenzene 0.059 0.051 0.018 189 106.836 A10 729 3,5-DM-1-Elbenzene 0.067 0.058 0.059 106.996 ? Unidentified 0.029 0.025 0.025 192 107.371 111 732 C11-isoparaffin 0.033 0.039 0.051 107.371 111 732 C11-isoparaffin 0.003 0.003 0.025 0.0051 107.371 111 732 C11-isoparaffin 0.003 0.003 0.028 0.0051 107.371 111 732 C11-isoparaffin 0.003 0.003 0.003 0.003 10031 10	0.017											
172 103.688 A10 708 1-M-4-isopropylbenzene 0.039 0.034 0.073 103.871 I11 709 C11-isoparaffin 0.085 0.086 0.085 0.086 0.074 104.089 I11 710 C11-isoparaffin? 0.012 0.012 0.012 0.015 104.280 ? Unidentified 0.016 0.012 0.016 104.426 A9 712 2,3-Dihydroindene 0.169 0.131 0.016 104.426 A9 712 2,3-Dihydroindene 0.169 0.131 0.017 104.724 N10 714 sec-Butylcyclidhexane 0.238 0.218 0.036 104.804 ? Unidentified 0.036 0.037 0.036 105.219 I11 720 3-Ethylnonane 0.061 0.062 0.007 0.081 105.330 I11 721 C11-isoparaffin 0.038 0.039 0.03	0.014											
173 103.871 111 709 C11-Isoparaffin 0.085 0.086 0. 174 104.089 111 710 C11-Isoparaffin? 0.012 0.012 0. 175 104.280 ? Unidentified 0.016 0.012 0. 176 104.426 A9 712 2,3-Dihydroindene 0.169 0.131 0. 177 104.724 N10 714 sec-Butylcycldhexane 0.238 0.218 0. 178 104.804 ? Unidentified 0.036 0.037 0. 179 104.992 ? Unidentified 0.008 0.007 0. 180 105.219 111 720 3-Ethylnonane 0.061 0.062 0. 181 105.330 111 721 C11-Isoparaffin 0.038 0.039 0. 182 105.484 N10 722 C10-Naphthene 0.112 0.103 0. 183 105.802 111 723 C11-Isoparaffin 0.122 0.122 0. 184 105.990 A10 724 1,3-Diethylbenzene 0.051 0.044 0. 185 106.244 A10 725 1-M-3-propylbenzene 0.051 0.044 0. 186 106.432 A10 726 1,4-Diethylbenzene 0.061 0.063 0. 187 106.604 A10 727 1-M-4-propylbenzene 0.061 0.053 0. 189 106.836 A10 729 3,5-DM-1-Elbenzene 0.067 0.058 0. 190 106.996 ? Unidentified 0.029 0.025 0.025 0.025 0.025 0.031 0.033 0.028 0.038 0.038 0.038 0.038 0.039 0.038 0.03	0.033											
174 104.089 111 710 C11-Isoparaffin? 0.012 0.012 0.015 104.280 ? Unidentified 0.016 0.012 0.016 104.426 A9 712 2,3-Dihydroindene 0.169 0.131 0.017 104.724 N10 714 sec-Butylcycldhexane 0.238 0.218 0.036 104.804 ? Unidentified 0.036 0.037 0.036 105.219 111 720 3-Ethylnonane 0.061 0.062 0.007 180 105.219 111 720 3-Ethylnonane 0.061 0.062 0.039 181 105.330 111 721 C11-Isoparaffin 0.038 0.039 0.039 182 105.484 N10 722 C10-Naphthene 0.112 0.103 0.038 105.802 111 723 C11-Isoparaffin 0.122 0.122 0.123 184 105.990 A10 724 1,3-Diethylbenzene 0.051 0.044 0.185 106.244 A10 725 1-M-3-propylbenzene 0.197 0.170 0.186 106.432 A10 726 1,4-Diethylbenzene 0.059 0.051 0.044 0.187 106.604 A10 727 1-M-4-propylbenzene 0.059 0.051 0.053 0.051 106.996 ? Unidentified 0.029 0.025 0.051 107.371 111 732 C11-Isoparaffin 0.029 0.025 0.025 107.371 111 732 C11-Isoparaffin 0.033 0.039 0.031 0.031 107.560 A10 736 C10-Aromatic 0.033 0.038 0.039	0.061											
175 104.280 ? Unidentified 0.016 0.012 0.016 104.426 A9 712 2,3-Dihydroindene 0.169 0.131 0.017 104.426 A9 712 2,3-Dihydroindene 0.169 0.131 0.017 104.426 A9 712 2,3-Dihydroindene 0.169 0.131 0.017 104.426 A9 712 2,3-Dihydroindene 0.238 0.218 0.026 0.036 0.037 0.026 0.036 0.037 0.027 0.027 0.027 0.028 0.029 0.029 0.025 0.029 0.028 0.029 0.029 0.025 0.031 0.0	0.009											
176 104.426 A9 712 2,3-Dihydroindene 0.169 0.131 0. 177 104.724 N10 714 sec-Butylcycldhexane 0.238 0.218 0.037 179 104.992 7 Unidentified 0.036 0.037 0.008 0.007 180 105.219 111 720 3-Ethylnonane 0.061 0.062 0.061 105.330 111 721 C11-Isoparaffin 0.038 0.039 0.039 182 105.484 N10 722 C10-Naphthene 0.112 0.103 0.038 105.802 111 723 C11-Isoparaffin 0.122 0.122 0.122 184 105.990 A10 724 1,3-Diethylbenzene 0.051 0.044 0.185 106.244 A10 725 1-M-3-propylbenzene 0.197 0.170 0.186 106.432 A10 726 1,4-Diethylbenzene 0.059 0.016 0.187 106.604 A10 727 1-M-4-propylbenzene 0.059 0.051 0.048 106.836 A10 729 3,5-DM-1-Elbenzene 0.067 0.058 0.059 106.996 7 Unidentified 0.029 0.025 0.025 192 107.371 111 732 C11-Isoparaffin 0.033 0.031 0.031 193 107.560 A10 736 C10-Aromatic 0.033 0.028 0.031	0.015											
177 104.724 N10 714 sec-Butylcyclidhexane 0.238 0.218 0.037 0.036 10.337 0.036 10.037 0.036 0.037 0.036 0.037 0.036 0.037 0.036 0.037 0.038 0.007 0.038 0.007 0.061 0.062 0.008 0.007 0.061 0.062 0.061 0.062 0.038 0.039 0.038 0.039 0.038 0.039 0.038 0.039 0.038 0.039 0.038 0.039 0.038 0.039 0.038 0.039 0.038 0.039 0.038 0.039 0.038 0.039 0.038 0.039 0.039 0.038 0.039 <td>0.160</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	0.160											
178 104.804 ? Unidentified 0.036 0.037 0.037 179 104.992 ? Unidentified 0.008 0.007 0.008 180 105.219 111 720 3-Ethylnonane 0.061 0.062 0.038 181 105.330 111 721 C11-Isoparaffin 0.038 0.039 0.039 0.038 0.039 0.039 0.038 0.039 0.039 0.038 0.039 0.039 0.038 0.039 0.044 0.039 0.044 0.039 0.044 0.039 0.044 0.044 0.044 0.044 0.044 0.044<				200		,,,,,	104.420	170				
179 104.992 ? Unidentified 0.008 0.007 0. 180 105.219 111 720 3-Ethylnonane 0.061 0.062 0. 181 105.330 111 721 C11-Isoparaffin 0.038 0.039 0. 182 105.484 N10 722 C10-Naphthiene 0.112 0.103 0. 183 105.802 111 723 C11-Isoparaffin 0.122 0.122 0. 184 105.990 A10 724 1,3-Diethylbenzene 0.051 0.044 0. 185 106.244 A10 725 1-M-3-propylbenzene 0.197 0.170 0. 186 106.432 A10 726 1,4-Diethylbenzene 0.019 0.016 0. 187 106.604 A10 727 1-M-4-propylbenzene 0.059 0.051 0. 188 106.710 A10 728 Butylbenzene 0.061 0.053 0. 189 106.836 A10 729 3,5-DM-1-Eibenzene 0.067 0.058 0. 190 106.996 ? Unidentified 0.029 0.025 0. 191 107.116 A10 730 1,2-Diethylbenzene? 0.031 0.033 0.028	0.191			sec-Butylcyclohexane	714	N10	104.724	177				
180 105.219 111 720 3-Ethylnonane 0.061 0.062 0.181 105.330 111 721 C11-Isoparaffin 0.038 0.039 0.039 182 105.484 N10 722 C10-Naphthiene 0.112 0.103 0.183 105.802 111 723 C11-Isoparaffin 0.122 0.122 0.184 105.990 A10 724 1,3-Diethylbenzene 0.051 0.044 0.185 106.244 A10 725 1-M-3-propylbenzene 0.197 0.170 0.186 106.432 A10 726 1,4-Diethylbenzene 0.019 0.016 0.187 108.604 A10 727 1-M-4-propylbenzene 0.059 0.051 0.061 0.063 0.063 0.068 106.838 A10 729 3,5-DM-1-Eibenzene 0.067 0.058 0.059 106.996 ? Unidentified 0.029 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.031 107.371 111 732 C11-Isoparaffin 0.031 0.031 0.031 0.031 107.560 A10 736 C10-Aromatic 0.033 0.028 0.028	0.026			dentified	Unid	?	104.804	178				
181 105.330 111 721 C11-Isoparaffin 0.038 0.039 0.039 182 105.484 N10 722 C10-Naphthene 0.112 0.103 0.183 105.802 111 723 C11-Isoparaffin 0.122 0.122 0.122 184 105.990 A10 724 1,3-Diethylbenzene 0.051 0.044 0.185 106.244 A10 725 1-M-3-propylbenzene 0.197 0.170 0.170 186 106.432 A10 726 1,4-Diethylbenzene 0.019 0.016 0.187 106.604 A10 727 1-M-4-propylbenzene 0.019 0.016 0.018 106.836 A10 728 Butylbenzene 0.061 0.053 0.051 189 106.836 A10 729 3,5-DM-1-Eibenzene 0.067 0.058 0.051 190 106.996 ? Unidentified 0.029 0.025 0.025 191 107.371 111 732 C11-Isoparaffin 0.031 0.031 0.031 193 107.560 A10 736 C10-Aromatic 0.033 0.028 0.028	0.007					?	104.992	179				
182 105.484 N10 722 C10-Naphthene 0.112 0.103 0 183 105.802 I11 723 C11-Isoparaffin 0.122 0.122 0 184 105.990 A10 724 1,3-Diethylbenzene 0.051 0.044 0 185 106.244 A10 725 1-M-3-propylbenzene 0.197 0.170 0 186 106.432 A10 726 1,4-Diethylbenzene 0.019 0.016 0 187 106.604 A10 727 1-M-4-propylbenzene 0.059 0.051 0 188 106.710 A10 728 Butylbenzene 0.061 0.053 0 189 106.836 A10 729 3,5-DM-1-Eibenzene 0.067 0.058 0 190 106.996 ? Unidentified 0.029 0.025 0 191 107.316 A10 730 1,2-Diethylbenzene? 0.031 0.03	0.044						105.219	180				
183 105.802 111 723 C11-Isoparaffin 0.122 0.122 0.122 184 105.990 A10 724 1,3-Diethylbenzene 0.051 0.044 0.185 106.244 A10 725 1-M-3-propylbenzene 0.197 0.170 0.186 106.432 A10 726 1,4-Diethylbenzene 0.019 0.016 0.187 106.604 A10 727 1-M-4-propylbenzene 0.019 0.016 0.188 106.710 A10 728 Butylbenzene 0.061 0.053 0.189 106.836 A10 729 3,5-DM-1-Eibenzene 0.067 0.058 0.190 106.996 7 Unidentified 0.029 0.025 0.191 107.116 A10 730 1,2-Diethylbenzene? 0.029 0.025 0.192 107.371 111 732 C11-Isoparaffin 0.031 0.031 0.031 193 107.560 A10 736 C10-Aromatic 0.033 0.028 0.028	0.028							181				
184 105.990 A10 724 1,3-Diethylbenzene 0.051 0.044 0 185 106.244 A10 725 1-M-3-propylbenzene 0.197 0.170 0 186 106.432 A10 726 1,4-Diethylbenzene 0.019 0.016 0 187 106.604 A10 727 1-M-4-propylbenzene 0.059 0.051 0 188 106.710 A10 728 Butylbenzene 0.061 0.053 0 189 106.836 A10 729 3,5-DM-1-Eibenzene 0.067 0.058 0 190 106.996 ? Unidentified 0.029 0.025 0 191 107.316 A10 730 1,2-Diethylbenzene? 0.029 0.025 0 192 107.371 111 732 C11-Isoparaffin 0.031 0.031 0 193 107.560 A10 736 C10-Aromatic 0.033 0.028	0.089			C10-Naphthene	722							
185 106.244 A10 725 1-M-3-propylbehzene 0.197 0.170 0 186 106.432 A10 726 1,4-Diethylbenzene 0.019 0.016 0 187 106.604 A10 727 1-M-4-propylbenzene 0.059 0.051 0 188 106.710 A10 728 Butylbenzene 0.061 0.053 0 189 106.836 A10 729 3,5-DM-1-Eibenzene 0.067 0.058 0 190 106.996 ? Unidentified 0.029 0.025 0 191 107.116 A10 730 1,2-Diethylbenzene? 0.029 0.025 0 192 107.371 I11 732 C11-isoparaffin 0.031 0.031 0.031 193 107.560 A10 736 C10-Aromatic 0.033 0.028 0	0.109			C11-Isoparaffin	723							
186 106.432 A10 726 1,4-Diethylbenzene 0.019 0.016 0 187 106.604 A10 727 1-M-4-propylbenzene 0.059 0.051 0 188 106.710 A10 728 Butylbenzene 0.061 0.053 0 189 106.836 A10 729 3,5-DM-1-Eibenzene 0.067 0.058 0 190 106.998 ? Unidentified 0.029 0.025 0 191 107.116 A10 730 1,2-Diethylbenzene? 0.029 0.025 0 192 107.371 I11 732 C11-isoparaffin 0.031 0.031 0.031 193 107.560 A10 736 C10-Aromatic 0.033 0.028 0	0.043											
187 106.604 A10 727 1-M-4-propylbenzene 0.059 0.051 0 188 106.710 A10 728 Butylbenzene 0.061 0.053 0 189 106.836 A10 729 3,5-DM-1-Eibenzene 0.067 0.058 0 190 106.996 ? Unidentified 0.029 0.025 0 191 107.116 A10 730 1,2-Diethylbenzene? 0.029 0.025 0 192 107.371 I11 732 C11-Isoparaffin 0.031 0.031 0.031 193 107.560 A10 736 C10-Aromatic 0.033 0.028 0	0.164											
188 106.710 A10 728 Butylbenzene 0.061 0.053 0 189 106.836 A10 729 3,5-DM-1-Elbenzene 0.067 0.058 0 190 106.996 ? Unidentified 0.029 0.025 0 191 107.116 A10 730 1,2-Diethylbenzene? 0.029 0.025 0 192 107.371 I11 732 C11-Isoparaffin 0.031 0.031 0 193 107.560 A10 736 C10-Aromatic 0.033 0.028 0	0.016	0.016	0.019	1,4-Diethylbienzene	726	A10	106,432	186				
188 106.710 A10 728 Butylbenzene 0.061 0.053 0 189 106.836 A10 729 3,5-DM-1-Elbenzene 0.067 0.058 0 190 106.996 ? Unidentified 0.029 0.025 0 191 107.116 A10 730 1,2-Diethylbenzene? 0.029 0.025 0 192 107.371 I11 732 C11-Isoparaffin 0.031 0.031 0 193 107.560 A10 736 C10-Aromatic 0.033 0.028 0	0.049	0.051	0.059	1.M.d.nonvilhenzene	797	840	100.001	407				
189 106.836 A10 729 3,5-DM-1-Elbenzene 0.067 0.058 0 190 106.996 ? Unidentified 0.029 0.025 0 191 107.116 A10 730 1,2-Diethylbenzene? 0.029 0.025 0 192 107.371 I11 732 C11-isoparaffin 0.031 0.031 0 193 107.560 A10 736 C10-Aromatic 0.033 0.028 0	0.051											
190 106.996 ? Unidentified 0.029 0.025 0 191 107.116 A10 730 1,2-Diethylbenzene? 0.029 0.025 0 192 107.371 I11 732 C11-isoparaffin 0.031 0.031 0 193 107.560 A10 736 C10-Aromatic 0.033 0.028 0	0.056											
191 107.116 A10 730 1,2-Diethylbenzene? 0.029 0.025 0 192 107.371 I11 732 C11-Isoparaffin 0.031 0.031 193 107.560 A10 736 C10-Aromatic 0.033 0.028 0	0.024											
192 107.371 I11 732 C11-isoparaffin 0.031 0.031 0.031 193 107.560 A10 736 C10-Aromatic 0.033 0.028 0	0.024			1 2 Diethylhanzene?	720	440						
193 107.560 A10 736 C10-Aromatic 0.033 0.028 0	0.022			C11-leonaratio	730	A10						
	0.028			C10-Arometic	736	111						
0.007 0.076	0.073							193				
194 107.070 A10 730 01077101111110	0.053											
195 107.025 A10 740 140 2 propyr series	0.000	0.004	0.004		740	A10	107.823	195				
(A Vigna and All Co				It was a second								

1. Detailed Hydrocarbon Analyses – Refinery Sample (Cont'd)

	Tank 31 :VHPCHEM	27-Aug-04, 00:17: Operato					
			,	Component List			
			`	component cist			
Pk#	Time	Group		ponent	%Wgt	%Vol	%Mol
196	107.977	?		entified	0.005	0.005	0.004
197	108.091	111		4-Methyldeciane	0.059	0.055	0.042
198	108.392			C11-Isoparaffin	0.085	0.050	0.049
199	108.528			1,4-DM-2-Ebenzene			0.049
200	108.691			1,3-DM-4-Ebenzene	0.053	0.045	
201	108.819			3-Methyldecane	0.016	0.016	0.011
202	108.938	?		entified	0.058	0.058	0.042
203	109,198			1,2-DM-4-Ebenz+C1indan	0.068	0.058	0.057
204	109.391	111		C11-Isoparaffin	0.010	0.010	0.007
205	109.747	A10	768	1,3-DM-2-Ebenzene	0.029	0.024	0.024
206	109.880	?	Unid	entified	0.006	0.005	0.005
207	110.001	?	Unid	entified	0.008	0.008	0.006
208	110.178	111	770	C11-Isoparaffin	0.018	0.017	0.013
209	110.511	111	775	C11-Isoparaffin	0.015	0.014	0.011
210	110,732	A11	780	1-M-4-tert-butylbenzene	0.021	0.018	0.016
211	110.857			1,2-DM-3-ethylbenzene	0.024	0.020	0.020
212	111.189			n-Undecane	0.154	0.155	0.110
213	111,367	A11		1-E-4-isopropylbenzene	0.020	0.018	0.015
214	111,800	A10	806	1,2,4,5-TetraMbenzene	0.011	0.009	0.009
215	112.062	A10	810	1,2,3,5-TetraMbenzene	0.020	0.017	0.017
216	112.402	112	812	C12-Isoparaffin	0.009	0.009	0.006
217	112.634		816	C11-Aromatic	0.009	0.007	0.006
218	113,375			1-Ethyl-2-propylbenzene	0.012	0.010	0.009
219	113,916			.C11-Aromatic	0.004	0.004	0.003
220	114,126	A11	834	1-Methyl-3-butylbenzene	0.012	0.010	0.009
221	114,386	A11	836	1,2,3,4-TetraMbz+C11aro	0.010	0.009	0.009
222	114.894	A11	842	C11-Aromatic	0.011	0.009	0.008
223	117.920	P12	895	n-Dodecane	0.005	0.005	0.003
				The control of the second			
				建 型色数型			
				4			
				2000 Tura 2000 Co			
				And the section of			
				ration and areas			
				E PARTIE			
				The contract of			
				hybra Commissional			
				Mariana Service Mariana Service Mariana Service Mariana			

Recovery = 100.00

1. Detailed Hydrocarbon Analyses – Refinery Sample (Cont'd)

Hydrocarbon Expert VIII Mon Aug 80 06:42 11 2004	Face
Sample: HUX Tank 31 Parameter: C:\HPCHEM\HCE30\CGSB_MULTI FLG	27-Aug-04, 00:17:27 Operator:

Components by Group

				6/18/-4	9/3/-1	of Mail	
Group	Time		ponent	%Wqt 0.109	%Vol 0.093	%Mol 0.157	
Aromatics	45.127		Benzene	3.707	3.191	4.510	
	68.463	300	Toluene		0.882	1.082	
	84.220	475	Ethylbenzene	1.024	1.728	2.112	
	85.445	500	m-Xylene	2.000 0.710	0.615	0.749	
	85.583	502	p-Xylene		0.015	1.243	
	88.407	550	o-Xylene	1.178 0.130	0.113	0.122	
	92.577	616	Isopropylberizene	0.130	0.407	0.438	
	96.014	651	Propylbenzene	0.733	0.632	0.683	
	96.860	655	1-Ethyl-3-methylbenzene	0.733	0.362	0.389	
	97.093	656	1-Ethyl-4-methylbenzene			0.564	
	97.703	658	1,3,5-Trimethylbenzene	0.604	0.521	0.309	
	98.783	663	1-Ethyl-2-methylbenzene	0.332	0.280	0.700	
	100.404	673	1,2,4-Trimethylbenzene	0.750	0.639	0.700	
	101.815	690	Isobutylbenzene	0.046	0.040		
	103.257	705	1,2,3-Trimethylbenzene	0.276	0.230	0.257	
	103.531	706	1-M-3-isopropylbenzene	0.016	0.014	0.014	
	103.688	708	1-M-4-isopropylbenzene	0.039	0.034	0.033	
	104.426	712	2,3-Dihydroindene	0.169	0.131	0.160	
	105.990	724	1,3-Diethylbenzene	0.051	0.044	0.043	
	106.244	725	1-M-3-propylbenzene	0.197	0.170	0.164	
	106.432	726	1,4-Diethylbenzene	0.019	0.016	0.016	
	106.604	727	1-M-4-propylbenzene	0.059	0.051	0.049	
	106,710	728	Butylbenzene	0.061	0.053	0.051	
	106.836	729	3,5-DM-1-Elbenzene	0.067	0.058	0.056	
	107.116	730	1,2-Diethylbenzene?	0.029	0.025	0.024	
	107.560	736	C10-Aromatic	0.033	0.028	0.028	
	107.670	738	C10-Aromatic	0.087	0.075	0.073	
	107.823	740	1-M-2-propyl benzene	0.064	0.054	0.053	
	108.528	756	1,4-DM-2-Elbenzene	0.059	0.050	0.049	
	108.691	758	1,3-DM-4-Ebenzene	0.053	0.045	0.044	
	109,198	764	1,2-DM-4-Ebenz+C1indan	0.068	0.058	0.057	
	109.747	768	1,3-DM-2-Ebenzene	0.029	0.024	0.024	
	110.732	780	1-M-4-tert-butylbenzene	0.021	0.018	0.016	
	110.857	785	1.2-DM-3-ethylbenzene	0.024	0.020	0.020	
	111.367	802	1-E-4-isopropylbenzene	0.020	0.018	0.015	
	111.800	806	1,2,4,5-TetraMbenzene	0.011	0.009	0.009	
	112.062	810		0.020	0.017	0.017	
	112.634	816		0.009	0.007	0.006	
	113,375		1-Ethyl-2-propylbenzene	0.012	0.010	0.009	
	113.916			0.004	0.004	0.003	
	114.126		1-Methyl-3-butylbenzene	0.012	0.010	0.009	
	114.386		1,2,3,4-TetraMbz+C11aro	0.010	0.009	0.009	
	, , , , , ,		Carteria, and a second				

Recovery = 100.00

1. Detailed Hydrocarbon Analyses – Refinery Sample (Cont'd)

mple: HUX Tank 3	27-Aug-	04, 00:17: Operate				
			January Maria			
	(Com	ponents by Gro	up		
Group	Time	Com	ponent	%Wgt	%Vol	%Mol
I-Paraffins	87.814	530		1.431	1.473	1.250
	89.684	572		0.427	0.435	0.373
	91.096	595	C9-Isoparaffin	0.019	0.019	0.016
	93.819	630	2,2-Dimethylloctane	0.128	0.131	0.101
	94.694		2.6-Dimethylloctane	0.097	0.100	0.077
	94.847	640	2,5-Dimethylloctane?	0.109	0.110	0.086
	95.399		3,6-Dimethyloctane	0.730 0.449	0.737	0.354
	96.232		3,6-Dimethyloctane	0.074	0.433	0.058
	96.471 97.974		3-Methyl-5-ethylheptane 2,3-Dimethyloctane	0.055	0.055	0.043
	98.212		5-Methylnonane	0.231	0.235	0.182
	98.402		4-Methylnoriane	0.556	0.563	0.438
	98.676		2-Methylnomane	0.492	0.504	0.387
	99.375		3-Methylnomane	0.480	0.489	0.378
	100.159		C10-Isoparaffin	0.051	0.052	0.040
	100.749		C10-Isoparaffin	0.202	0.205	0.159
	100.899		C10-Isoparaffin	0.176	0.179	0.138
	101.052		Isobutylcyclohexane	0.075	0.070	0.059
	101.492	678	C10-Isoparaffin	0.031	0.032	0.025
	101.616	682	C10-Isopareffin	0.009	0.009	0.007
	102.017		C10-Isoparaffin	0.077	0.078	0.061
	102.602		C11-Isoparaffin	0.019	0.019	0.013
	103.062	704	C11-Isoparaffin	0.025	0.025	0.018
	103.871	709	C11-Isoparaffin	0.085	0.086	0.009
	104.089		C11-Isoparaffin?	0.012 0.061	0.012	0.044
	105.219		3-Ethylnonane	0.038	0.039	0.028
	105.330 105.802		C11-Isoparaffin C11-Isoparaffin	0.122	0.122	0.109
	107.371	732	C11-Isoparaffin	0.031	0.031	0.022
	108.091	748	4-Methyldecane	0.059	0.055	0.042
	108.392		C11-Isoparaffin	0.065	0.061	0.047
	108,819		3-Methyldecane	0.016	0.016	0.011
	109.391	766	C11-Isoparaffin	0.010	0.010	0.007
	110,178	770	C11-Isoparaffin	0.018	0.017	0.013
	110,511	775	C11-Isoparaffin	0.015	0.014	0.011
	112.402	812	C12-Isoparaffin	0.009	0.009	0.006
Naphthenes	40.146			0.679	0.676	0.904
	46.992		Cyclohexane	0.504	0.483 1.472	1,698
	52.814			1.487 1.349	1.344	1.540
	53.391 54.007			1.632	1.621	1.863
	34,001					
			to the same of the left			
overy = 100.00			セグルル・ が			

1. Detailed Hydrocarbon Analyses – Refinery Sample (Cont'd)

nple: HUX Tank 31 ameter: C:\HPCHEM\HCE30\CGSB_MULTI FLG								
Components by Group								
I-Paraffins	27.947	64 2	2.3-Dimethylbutane	0.008	0.009	0.010		
	29.002		2-Methylpentane	0.065	0.075	0.085		
	31.636	80 3	3-Methylpentane	0.086	0.096	0.111		
			2,4-Dimethylpentane	0.143	0.158	0.160		
	46.727	134	33DMC5+5m1C8ene	0.046	0.050	0.052		
	50.190	156	2-MethylC6 + C7-Olefin	4.159	4.571	4.652		
	52.019	166	3-Methylhexane	3.284	3.572	3.673		
	54.168		3-Ethylpentane	0.244	0.260	0.273		
	54.624		2,2,4-Trimethylpentane	0.040	0.043	0.039		
	62.330		2,2-Dimethylhexane	0.062	0.066	0.061		
	64.404		2,2,3-Trimethylpentane	0.011	0.012	0.011		
	64.637		2,5-DMC6 + C8-olefin	0.504	0.539	0.494		
	64.970		2.4-Dimethylhexane	0.594	0.633	0.583		
			3,3-DMC6 + C8-olefin	0.078	0.081	0.076		
			2,3,4-Trimethylpentane	0.067	0.069	0.065		
			2,3-Dimethy hexane	0.397	0.416 0.166	0.390 0.157		
			2-M-3-Epentane	0.159	3.301	3.030		
			2-Methylheptane 4-Methylheptane	3.088 1.026	1.062	1.007		
			3-Methylheptane	2.529	2.673	2.482		
	73,052		3-Ethylhexane	1.226	1.281	1,203		
			2.2.4-Trimethylhexane	0.024	0.025	0.021		
			2,3,5-Trimethylhexane	0.049	0.051	0.043		
	80.445		2.2.3.4-TetraMC5	0.056	0.057	0.049		
	81.055		2,4-Dimethylheptane	0.420	0.439	0.367		
	81.862		2-Methyl-4-Ethylhexane	0.056	0.058	0.049		
	82.017	446	2,6-Dimethylheptane	0.829	0.859	0.724		
	82.940	458	2,5 & 3,5-DMheptane	0.718	0.739	0.628		
	83.230	462	3,3-Dimethylheptane	0.207	0.214	0.181		
	83.633	466	C9-Isoparaffin	0.218	0.223	0.190		
	84.624			0.625	0.631	0.546		
	85.163			0.153	0.153	0.134		
	85.750	503	2,3-Dimethylheptane	0.518	0.530	0.453		
			3,4-Dimethylheptane	0.064	0.066	0.056		
	86.387	510	3-Methyl-3-ethylhexane	0.246	0.248	0.215		
	86.552	516	4-Ethylheptane	0.101	0.104	0.089		
			4-MC8+C9-Olefin	0.884 1.215	0.916 1.275	0.773 1.061		
			2-Methyloctane	0.139	0.144	0.122		
			C9-Isoparaffin 3-Ethylheptane	0.138	0.379	0.324		
	87.844	528	3-Ethylneptaine	0.07	0.010	0.027		

1. Detailed Hydrocarbon Analyses – Refinery Sample (Cont'd)

imple: HUX Tank 31 irameter: C:VHPCHEMVHCE30\CGSB_MULTI FLG						04, 00:17: Operato
			The second second			
	(om	ponents by Gro	up		
Group	Time	Com	ponent	%Wat	%Vol	%Mol
I-Paraffins	87.814	530	3-Methyloctane	1.431	1.473	1.250
TT Grammo	89.684	572	C9-Isoparaffin	0.427	0.435	0.373
	91.096	595	C9-Isoparaffin	0.019	0.019	0.016
	93.819	630	2.2-Dimethylloctane	0.128	0.131	0.101
	94.694		2,6-Dimethylloctane	0.097	0.100	0.077
	94.847	640	2,5-Dimethyloctane?	0.109	0.110	0.086
	95.399	646	3,6-Dimethyloctane	0.730	0.737	0.575
	96.232	652	3,6-Dimethyloctane	0.449	0.455	0.354
	96.471	653	3-Methyl-5-ethylheptane	0.074	0.074	0.058
	97.974		2,3-Dimethyloctane	0.055	0.055	0.043
	98.212		5-Methylnonane	0.231	0.235	0.182
	98.402		4-Methylnoriane	0.556	0.563	0.438
	98.676		2-Methylnomane	0.492	0.504	0.387
	99.375		3-Methylnomane	0.480	0.489	0.378
	100.159		C10-Isoparaffin	0.051	0.052	0.040
	100.749		C10-Isoparaffin	0.202	0.205	0.159
	100.899	675	C10-Isoparaffin	0.176	0.179	0.138
	101.052		Isobutylcyclohexane	0.075	0.070	0.039
	101.492	678	C10-Isoparaffin	0.031	0.032	0.025
	101.616	682	C10-Isoparaffin	0.009	0.008	0.061
	102.017		C10-Isoparaffin	0.017	0.019	0.013
	102.602	702	C11-Isoparaffin	0.025	0.025	0.018
	103.062	704	C11-Isoparaffin	0.025	0.023	0.061
	103.871	709 710	C11-Isoparaffin C11-Isoparaffin?	0.012	0.012	0.009
	104.089	720		0.061	0.062	0.044
	105.219 105.330		3-Ethylnonane C11-Isoparaffin	0.038	0.039	0.028
	105.802	723	C11-Isoparaffin	0.122	0.122	0.109
	107.371	732	C11-Isoparaffin	0.031	0.031	0.022
	108.091	748	4-Methyldecane	0.059	0.055	0.042
	108.392	754	C11-Isoparaffin	0.065	0.061	0.047
	108.819	762	3-Methyldecane	0.016	0.016	0.011
	109,391	766	C11-Isoparaffin	0.010	0.010	0.007
	110,178	770	C11-Isoparaffin	0.018	0.017	0.013
	110,511	775	C11-Isoparaffin	0.015	0.014	0.011
	112.402	812	C12-Isoparaffin	0.009	0.009	0.006
Naphthenes	40.146	112	McyC5+2,2IDMC5	0.679	0.676	0.904
	46.992	136	Cyclohexane	0.504	0.483	0.671
	52.814		t-1,3-DimethylcyC5	1.487	1.472	1.698
	53.391	174	c-1;3-DMcyclopentane t-1,2-DimethylcycloC5	1.349 1.632	1.344 1.621	1.540
	54.007	176				

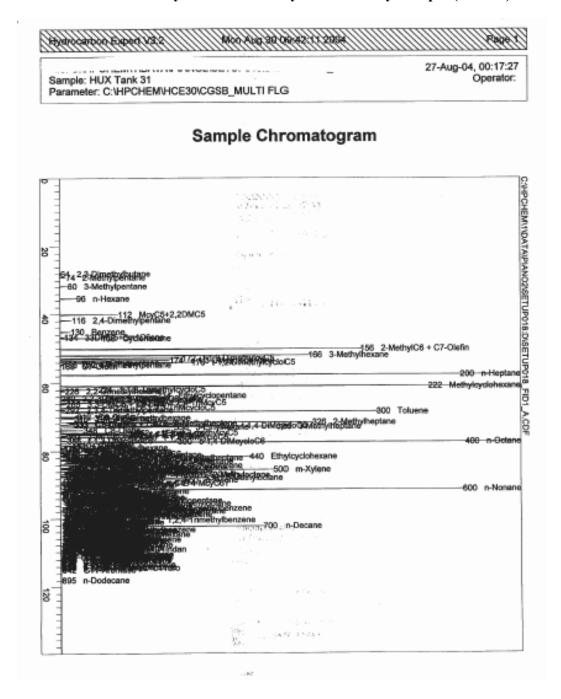
1. Detailed Hydrocarbon Analyses – Refinery Sample (Cont'd)

all phallage again.

mple: HUX Tank 3*		cces	MULTIFIC		27-Aug-	04, 00:17: Operato
ameter, C. HPCH	EMITCESOV	0000	_MOETI FEG			
			64 n 194 n			
		`om	ponents by Gro	un		
	•	,,,,,		ч		
			1000			
Group	Time		ponent	%Wgt	%Vol	%Mol
Naphthenes	60.995		Methylcyclohexane	7.067	6.858	8,068
			1,1,3-TrimethylcycloC5	0.486	0.485	0.485
	63.709		Ethylcyclopentane	1.219	1.188	1.392
	65.777			0.949	0.948	0.948
			t,c-1,2,3-TriMcycloC5	0.659	0.653 1.866	1.967
			t-1,4-DiMcycloC6	1.968 0.814	0.788	0.813
	74.737		c1Ethyl-3-methylcyC5	0.749	0.727	0.748
	75.091 75.307		t-1-E-3-McyC5	0.745	0.691	0.714
	75.575		t-1-E-2-McyC5 1-M-1-EcycloC5	0.077	0.073	0.077
	75.992			0.872	0.839	0.871
	76.945	385	t-1,2-DiMcycleC6 t-1,3-DiMcycleC6	0.070	0.067	0.070
	77.232	300	c-1,4-DiMcycloC6	1.317	1.262	1.316
	80.823		c-1,2-DiMcycloC6	0.339	0.316	0.339
	81.647		Ethylcyclohexane	2.095	1.984	2.093
	84.401		t-1 2 4-TrimethylcvC6	0.352	0.336	0.312
	88.061	540	c-1 2 4-TriMicvC8	0.092	0.088	0.082
	88.310		1,12-TriMcycloC6	0.149	0.145	0.132
	89.236	568	t-1-E-4-M-cyC6?	0.532	0.498	0.473
	89.390	570	c-1-E-4-McyC6?	0.820	0.767	0.728
	90.177	580	Isobutylcyclopentane	0.146	0.139	0.130
	92.094		1-M-1-Ecyclohexane	0.170	0.157	0.151
	92.300		1 -M-2-PcycloC5	0.017	0.016	0.015
	92.901		tert-Butylcyclopentane	0.117	0.111	0.104
	93.563		Isopropylcyclohexane	0.229	0.213	0.204
	94.370		1-M-4-isopropylcyC6?	0.247	0.232	0.197
	94.520			0.567	0.294	0.275
	94.956		Butylcyclopishtane 1-M-2-EcycloC6	0.104	0.095	0.092
	97.623			0.081	0.076	0.065
	99.047		C10-Naphthene	0.148	0.136	0.118
	101.342		- 12 110pm	0.071	0.072	0.057
	104.724			0.238	0.218	0.191
	105.484			0.112	0.103	0.089
Olefins	55.001	189	C7-Olefin	0.008	0.008	0.009
	69.951	312		0.198	0.207	0.197
	72.065	330	C7-Diolefin + C8-Olefin	0.192	0.202	0.192
	72.188	333	C8-Olefins	0.162	0.170	0.162
	73.918			0.252	0.263	0.251
	78.324		C9-Olefin	0.173	0.179	0.153
	78.461	412	C9-Olefin	0.117	0.121	0.104
covery = 100.00	78.461		C9-Olefin	0.117	0.121	

1. Detailed Hydrocarbon Analyses – Refinery Sample (Cont'd)

mple: HUX Tank 3	31 IEM/HCE30/0	GSB_MULTI FLG	-	27-Aug-	04, 00:17:2 Operator
amotor, C.V.		j. 11 %			
	c	omponents by Gro	oup		
		1. Kill 1961 a	-		
_			%Wgt	%Vol	%Mol
Group		Component 426 cis-2-Octene	0.249	0.256	0.248
Olefins		436 C9-Olefin	0.070	0.072	0.062
		449 C9-Olefin	0.131	0.135	0.117
		452 C9-Olefins	0.941	0.967	0.836
		454 C9-Olefins	0.173	0.176	0.152
		460 C9-Olefins	0.122	0.126	0.109
		490 C9-Olefins	0.087	0.089	0.077
		508 C9-Olefin	0.150	0.154	0.134
	87.888	535 C9-Olefin	0.137	0.139	0.121
		560 C9-Olefin	0.089	0.090	0.079
		562 C9-Olefin	0.151	0.154	0.134
	88.869	564 C9-Olefin	0.021	0.021	0.018
	90,006	575 1-Nonene	0.099	0.101	0.088
	90,965	590 cis-3-Nonene	0.066	0.067	0.058
	91.746	604 trans-2-Nonene	0.511	0.516	0.453
	92.830	618 cis-2-Nonene	0.029	0.030	0.026
	93.051	622 C9-Olefins	0.316	0.320	0.281
	93.288	624 C9-Olefin	0.249	0.252	0.221
	95.825	650 C10-Olefin	0.133	0.134	0.107
	96.607	654 C10-Olefin	0.100	0.101	0.080
	99.705	670 C10-Olefin	0.041	0.042	0.033
Paraffin	35.357	96 n-Hexane	0.183	0.207	0.239
	57.634	200 n-Heptane	6.727	7.339	7.525
	77.480	400 n-Octane	5.571	5.913	5.466
	91.328	600 n-Nonane	4.325	4.495	3.780
	102.309	700 n-Decane	1.893	1.935	1.491
	111.189		0.154	0.155	0.110
	117.920	895 n-Dodecane	0.005	0.005	0.003
Oxygenates		Service Control			
Unidentified	79.375	Unidentified	0.053	0.055	0.046
	83.405	Unidentified	0.332	0.344	0.290
	86.133	Unidentified	0.067	0.069	0.080
	87.260	Unidentified	0.033	0.035	0.029
		Unidentified	0.021	0.021	0.019
		Unidentified	0.069	0.066	0.062
		Unidentified	0.015	0.015	0.014
		Unidentified	0.021	0.021	0.016
	94.069	Unidentified	0.016 0.102	0.017	0.013
	94,290	Unidentified	0.102	0.080	0.082


And Andrews

Recovery = 100.00

1. Detailed Hydrocarbon Analyses – Refinery Sample (Cont'd)

imple: HUX Tank	31	CGSB_MULTI FLG		27-Aug	-04, 00:17: Operato
		Mary Commence			
	(Components by	Group		
Group Unidentified	99.533 99.554 99.654 100.579 101.239 102.817 103.454 104.280 104.804 104.992 106.996 107.977 108.938	Unidentified	9.Wgt 0.054 0.026 0.074 0.025 0.081 0.093 0.118 0.156 0.019 0.033 0.020 0.016 0.036 0.008 0.005 0.005 0.005	%Voi 0.050 0.023 0.075 0.025 0.081 0.093 0.120 0.133 0.020 0.034 0.017 0.012 0.037 0.007 0.025 0.005 0.005 0.008	%Mol 0.048 0.024 0.058 0.020 0.065 0.074 0.093 0.145 0.016 0.024 0.017 0.026 0.007 0.024 0.004 0.004 0.004 0.005 0.005
Plus		give a-			
		athlesses			
		- 'A-			
		Apple Comments			
		20. 1800/24			
		(Addison			
		1/30			
		design to			
		· Books			

		att in			

1. Detailed Hydrocarbon Analyses – Refinery Sample (Cont'd)

2. Detailed Hydrocarbon Analyses – Comparison of Three Sample Drums

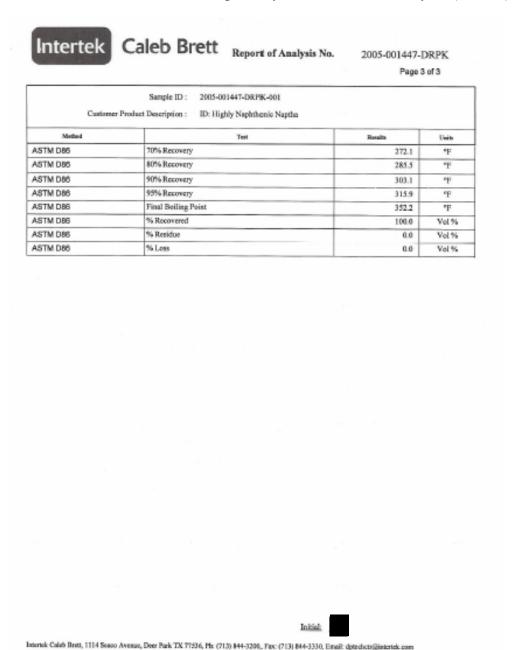
•	Summary by Group		DrunI
Group Aromatic I-Paraffin Naphther Olefins Paraffin Oxygena Unidentif	s 31.568 33.227 tes 29.385 26.435 4.662 4.784 18.632 19.826 0.000 0.000	%Mol 14,981 30,188 30,987 4,210 18,415 0,000 1,239 0,000	
Drum was	Summary by Group		Dem
Group Aromatics I-Paraffin Naphthen Olefins Paraffin Oxygenat Unidentifi Plus	31.418 33.085 29.087 28.165 4.626 4.750 18.599 19.799 0.000 0.000	5.Mol 15.510 30.009 30.661 4.167 18.350 0.000 1.304 0.000	
	Summary by Group		
Group Aromatics I-Paraffins Naphthens Olefins Paraffin Oxygenat Unidentifit	31.569 33.227 es 29.451 28.496 4.571 4.690 18.730 19.927 0.000 0.000	%Mol 14.649 30.199 31.070 4.128 18.505 0.000 1.448 0.000	Dem

3. Intertek Caleb Brett Sample, Physical-Chemical Analyses

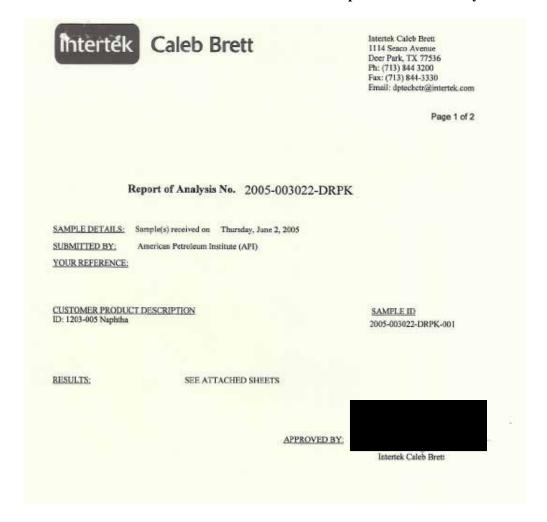
3. Intertek Caleb Brett Sample, Physical-Chemical Analyses (Cont'd)

Report of Analysis No.

2005-001447-DRPK


Page 2 of 3

Customer Pr	reduct Description: ID: Highly Naphthenic Napha		
Method	Test	Results	Units
ASTM D1319 (IP 156)	Aromatics	10.1	Vol %
ASTM D1319 (IP 156)	Olefins	0.6	Vol %
ASTM D1319 (IP 156)	Saturates	89.3	Vol %
ASTM D2386	Freezing Point	<-72.0	
ASTM D2386	Freezing Point	<.97.6	ok.
ASTM D4052 (IP 365)	API Gravity 15.56°C, 60°F	56.1	*API
ASTM D445 (IP 7181)	Kinematic Viscosity at 40°C, 104°F	0.6433	cSt
ASTM D4629 (IP 379)	Nitrogen	0.6	ppm (mg/kg
ASTM D5191-EPA	Dry Vapor Pressure Equivalent	1.43	psi
ASTM D6191-EPA	Sample	Normal	
ASTM D5443	Iso-Paraffins	28.52	Vol %
ASTM D5443	n-Paraffins	19.88	Vol %
ASTM D5443	Olefins	0.67	Vol %
ASTM D5443	Naphthenes	39.59	Vol %
ASTM D6443	Aromatics	11.12	Vol %
ASTM D5443	> 200 °C (Non Aromatic)	0.22	Vol %
ASTM D5453	Sulfur	2.1	ppm (µg/g)
ASTM D8730	Paraffins	20.33	Vol %
ASTM D6730	Iso-Paraffins	31.68	Vol %
ASTM D6730	Olefins	1.86	Vol %
ASTM D6730	Naphthenes	32.32	Vol %
ASTM D6730	Aromatics	12.25	Vol %
ASTM D6730	C14+	<0.01	Vol %
ASTM D8730	Unknowns	1.56	Vol.%
ASTM D8730	N+A	44.57	Vol %
ASTM D8730	Molecular Weight	112.25	
ASTM D86	Initial Boiling Point	209.8	«F
ASTM D86	5% Recovery	225.9	ap
ASTM D86	10% Recovery	229.0	o.F
ASTM D86	20% Recovery	233.5	*F
ASTM D66	30% Recovery	238.4	°F
ASTM D68	40% Recovery	244.8	%F
ASTM D66	50% Recovery	251.7	op
ASTM D88	60% Recovery	260.7	op


Initial:

Interteix Caleb Brett, 1114 Seaco Avenue, Deer Park TX 77536, Phr. (713) 844-3200, Fax: (713) 844-3330, Ernall: éptechoin@interteix.com

3. Intertek Caleb Brett Sample, Physical-Chemical Analyses (Cont'd)

4. Intertek Caleb Brett Reid Vapor Pressure Analysis

4. Intertek Caleb Brett Reid Vapor Pressure Analysis (Cont'd)

	Caleb Brett Report of Analysis No.	2005-003022-l Page 2	
	Sample ID: 2005-003022-DRPK-001		
Customer Prod	luct Description : ID: 1203-005 Naphtha		
Method	Test	Results	Units
STM D323 Procedure A	Reid Vapor Pressure	0.00	psi

APPENDIX H – SAMPLE CHARACTERIZATION OF HIGH NAPHTHENIC NAPHTHA: CHEMICAL ABSTRACT NUMBER DESIGNATION

The test material used in studies to characterize mammalian toxicity and biodegradation of hydrocarbons in the Naphthenic (cycloparaffin) blending streams category of the HPV Gasoline Blending Stream Test Plan is a high naphthenic naphtha containing approximately 30% naphthenes. Results of studies with this test material can be used for read-across purposes for all CAS numbers identifying high naphthenic gasoline blending streams containing 19 to 30% or more naphthenic components.

This high naphthenic naphtha is derived from hydrogenation and hydrocracking process steps with removal of nitrogen and sulfur (sweetening) that convert low grade gas oils to higher quality components for direct blending of gasoline. Due to the multiple steps in generating this test material, the supplying refinery identified the sample under the broad CAS #64741-41-9, with the Chemical Abstract name of Naphtha, petroleum, heavy straight run, a CAS number which encompasses the more process-specific designations sweet naphtha and heavy crackate. The refinery further indicated that the sample underwent the hydrocracking HUX process that also makes applicable the more narrowly defined designation heavy hydrocrackate. Finally, the CAS #64741-78-2, with the Chemical Abstract name of Naphtha, petroleum, heavy hydrocracked can and has been used to identify this test material and is descriptive of the hydrocracking step employed.

This test sample identified as CAS #64741-41-9 for chain of custody purposes was collected as a single lot from one refinery and was chemically characterized prior to shipping in 3 drums to the sample repository. Contents of each drum were further analyzed to verify compositional uniformity between drums and distributed to the contract laboratories for testing. CAS #64741-41-9 and the name Naphtha, petroleum, heavy straight run will therefore be used officially to designate the test material.

Revision 1: November 18, 2008

READY BIODEGRADABILITY: OECD 301F MANOMETRIC RESPIROMETRY TEST on HIGH NAPHTHENIC, HEAVY, STRAIGHT-RUN NAPHTHA STUDY # 0545979, MRD-05-459

APPENDIX I – REPORT REVISION

The final report for Study 0545979 was revised at the request of the sponsor as follows:

Page 1 – Document number

PREVIOUS: 07TP 3 REVISION: 08TP 11

REASON FOR CHANGE: New document number generated as result of report revision, original

document number supplanted.

Page 2 – TABLE OF CONTENTS

REVISION: Appendix H - Sample Characterization of High Naphthenic Naphtha:

Chemical Abstract Number Designation......69

REASON FOR CHANGE: Table of Contents updated with additional information supplied by

sponsor.

Page 4 – QUALITY ASSURANCE STATEMENT

REVISION: Report Revision 1 added.

REASON FOR CHANGE: QA statement updated to reflect review of revisions.

Page 9 – Test Substance Identification

PREVIOUS: Sponsor Identification: High Naphthenic, Heavy, Straight-Run Naphtha REVISION: Sponsor Identification: High Naphthenic, Heavy, Straight-Run Naphtha*

* An explanation of the Chemical Abstract Service (CAS) number designation for this test sample is provided in Appendix H.

REASON FOR CHANGE: Footnote added, refers to additional information supplied by sponsor.

Page 46 – APPENDIX G - PRE-TEST COMPOSITIONAL ANALYSES AND SAMPLE PHYSICAL—CHEMICAL CHARACTERIZATION DATA

PREVIOUS: The chemical analyses high naphthenic naphtha (CAS Number 64741-78-2).

REVISION: The chemical analyses high naphthenic naphtha (CAS Number 64741-78-2)*.

* An explanation of the Chemical Abstract Service (CAS) number designation for this test sample is provided in Appendix H.

REASON FOR CHANGE: Report updated with additional information supplied by sponsor.

Page 69 – APPENDIX H – SAMPLE CHARACTERIZATION OF HIGH NAPHTHENIC

NAPHTHA: CHEMICAL ABSTRACT NUMBER DESIGNATION

REVISION: Additional Appendix added.

REASON FOR CHANGE: Report updated with additional information supplied by sponsor.

Page 70 – APPENDIX I – REPORT REVISION

REVISION: Additional Appendix added.

REASON FOR CHANGE: Report updated with details for report revision.

25 NOV 08 Date

Revision 1: November 18, 2008